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ABSTRACT
Graph-based methods have witnessed tremendous success in traf-
fic prediction, largely attributed to their superior ability in captur-
ing and modeling spatial dependencies. However, urban-scale traf-
fic data are usually distributed among various owners, limited in
sharing due to privacy restrictions. This fragmentation of data se-
verely hinders interaction across clients, impeding the utilization
of inter-client spatial dependencies. Existing studies have yet to
address this non-trivial issue, thereby leading to sub-optimal per-
formance. To fill this gap, we propose FedGTP, a new federated
graph-based traffic prediction framework that promotes adaptive
exploitation of inter-client spatial dependencies to recover close-
to-optimal performance complying with privacy regulations like
GDPR. We validate FedGTP via large-scale application-driven ex-
periments on real-world datasets. Extensive baseline comparison,
ablation study and case study demonstrate that FedGTP indeed
surpasses existing methods through fully recovering inter-client
spatial dependencies, achieving 21.08%, 13.48%, 19.90% decrease
on RMSE, MAE and MAPE, respectively. Our code is available at
https://github.com/LarryHawkingYoung/KDD2024_FedGTP.
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Figure 1: Inter-/intra-client spatial dependency.
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1 INTRODUCTION
Traffic prediction is essential for optimizing urban mobility [26,
35], reducing congestion [17, 21], and enhancing road safety [42,
51, 56]. It forecasts traffic conditions by analyzing patterns derived
from traffic data spanning both spatial and temporal dimensions.
These data can be effectively modeled as spatiotemporal graphs,
where nodes represent locations and edges represent spatial de-
pendencies between them. Therefore, graph-based deep learning
methods like Spatial-Temporal Graph Neural Networks (STGNNs)
have emerged as the primary tool for traffic prediction, incorpo-
rating Graph Neural Networks (GNNs) to capture non-Euclidean
spatial dependencies [44].

Spatial dependencies are crucial for accurate traffic prediction
[14, 24, 48], yet their practical utilization poses significant chal-
lenges. This is because traffic data are often distributed among
various owners (governments, companies, or individuals), a.k.a.,
clients, with privacy regulations such as GDPR1 restricting the free
sharing of data. This leads to the fragmentation of spatial depen-
dency information, dividing it intomultiple sub-graphs, each owned
by a distinct client. Accordingly, spatial dependencies in traffic
data are now categorized into two types: intra-client and inter-client
(see Fig. 1). Intra-client dependencies (individual sub-graphs) can
still be captured effectively within each client’s data. However, ex-
tracting inter-client dependencies (the connections between sub-
graphs) becomes complicated due to the necessary cross-client in-
formation exchange under privacy constraints.
1https://gdpr-info.eu
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Figure 2: A toy example on the importance of inter-client
spatial dependencies: (a) shows the data distributions of five
taxi companies, with red lines highlighting inter-client spa-
tial dependencies; (b) plots the prediction error (MAE) in-
crease after removing inter-client spatial dependencies.

Federated Learning (FL) [31, 49] offers a natural solution for dis-
tributed model training while respecting privacy concerns. There
is also a growing interest to apply federated learning to STGNNs
for federated graph-based traffic prediction [23, 27, 28, 32, 39, 43,
47, 52–54]. However, existing proposals can be classified into two
categories by their limitations: (i) Those that largely under-utilize
inter-client spatial dependencies under privacy constraints [23, 27,
43, 53], which incur potential accuracy degradation. A toy exam-
ple (see Fig. 2) demonstrates the importance of inter-client spatial
dependencies in federated graph-based traffic prediction. This ex-
ample predicts the traffic flows of five taxi companies in a city and
reveals that removing inter-client dependencies from training data
results in up to 15% error increase for each taxi company. (ii)Those
that treat the inter-client spatial dependencies as public and pre-
defined [28, 32, 39, 47, 52, 54], which compromise privacy. Later
our experiments also reveal that predefined dependencies inade-
quately capture complex relations, leading to poor performance.
Thus, it’s vital to fully exploit the inter-client spatial dependencies
in federated graph-based traffic prediction.

In this paper, we introduce FedGTP (Federated Graph-based
Traffic Prediction), a new federated graph learning framework de-
signed to fully leverage inter-client spatial dependencies for traffic
prediction. We base FedGTP on ASTGNNs [4, 20, 45], known for
their state-of-the-art prediction accuracy through adaptive learn-
ing of spatial dependencies. However, learning inter-client spatial
dependencies in a federated setup is non-trivial. This challenge
arises because the spatial dependency learning in ASTGNNs re-
quires access to raw data, which becomes impractical in federated
learning without extensive secure operations. To address this, we
reformulate spatial modeling and learning into components spe-
cific to intra- and inter-client interactions. At the heart of inter-
client spatial dependency reconstruction, we introduce an adaptive
polynomial-based activation decompositionmechanism,whichmin-
imizes the need for cross-client computations while preserving pri-
vacy. Finally, we integrate our reformulation into the core of feder-
ated learning, while enabling personalization, a beneficial feature
when data distributions vary significantly among clients.

The main contributions of this paper are as follows:
• To the best of our knowledge, it is the first work that ad-
vocates and enables full utilization of inter-client spatial de-
pendencies for federated graph-based traffic prediction.

• We propose a novel and unified framework FedGTP, which
performs adaptive learning of spatial dependencies across
clients, enabling profound exploitation of spatial relations
and thus enhancing performance. This framework includes
a polynomial-based privacy-preserving mechanism that re-
veals only aggregated intermediate results to server for se-
cure summation, adhering to privacy regulations like GDPR.
• Extensive experiments on real-world datasets show that by
fully recovering inter-client spatial dependencies, our solu-
tion largely outperforms prior methods by 21.08%, 13.48%,
19.90% for RMSE, MAE and MAPE, respectively.

2 RELATEDWORK
2.1 Graph-based Traffic Prediction
Spatial-temporal graph neural networks (STGNNs) prevail in graph-
based traffic prediction [44]. For temporal modeling, both recur-
rent [6, 14, 24] and convolutional neural networks [48, 50] are fre-
quently used. Attention mechanisms are also used to extract dy-
namic temporal patterns in ASTGCN [15], GMAN [55], STG2Seq
[2], andASTGNN(p) [16]. Our focus is on the spatial modeling. Con-
ventional STGNNs often assume a graph topology predefined by
geographic distance [6, 24, 48, 50], or semantic similarity [2, 3, 14].
One alternative is to apply attention-based spatial models to learn
edge weights from data [2, 6, 15, 16, 55]. However, these studies
fail to capture the full spatial dependencies because the learned
connections are still restricted by the predefined adjacency ma-
trix. A major advancement is the development of adaptive spatial-
temporal graph neural networks (ASTGNNs) [4, 20, 45]. For in-
stance, Graph WaveNet [45] introduces a trainable AGCN layer
to learn a normalized adaptive adjacency matrix. AGCRN [4] en-
hances the AGCN layer by discerning node-specific patterns. AST-
GAT [20] adopts a network generator model to create an adaptive
discrete graph and infer hidden correlations directly from the data.
We ground our work upon ASTGNNs [4, 20, 45] since they can in-
fer spatial dependencies from data and achieve the state-of-the-art
performances.

2.2 Federated Graph Learning
To facilitate graph learning in scenarios where graph data are dis-
tributed and necessitate privacy protection, FL has been integrated
into graph learning. Existing works in general FGL primarily focus
on tackling challenges such as cross-client missing information,
privacy leakage of graph structures, and data heterogeneity across
clients [22, 29].We specifically focus on the reconstruction of inter-
clientmissing information, which is coherent to the spatial-temporal
essence of traffic prediction.

Some studies strictly protect privacy of both temporal data on
nodes and the spatial topology on edges. FLoS [43] and MFVST-
GNN [27] aggregates local STGNNs via FedAvg [31] without con-
sidering inter-client spatial dependencies. FASTGNN [53] applies
differential privacy to aggregate adjacency matrices of each sub-
graph, but it randomly generates inter-client spatial connections.
FML-ST [23] constructs local spatial-temporal patterns on each
client, which are aggregated into a global one assisted by the server.
These methods largely under-utilize inter-client spatial dependen-
cies with privacy constraints, yielding sub-optimal performance.
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Another major part of studies reconstruct information based on
traditional GNNs and treat the inter-client edges as public and pre-
defined. For instance, CNFGNN [32] extracts the cross-node de-
pendencies on a pre-defined graph topology at the server. Fed-
STN [52] extracts long-term and short-term spatial-temporal in-
formation separately on public road network. FedAGCN [39] and
FCGCN [47] treat spatial topology as public and apply community
detection algorithms to partition sub-graphs. In CTFL [54], the spa-
tial graph is available to all clients. These methods partially com-
promise privacy, and the dependencies extracted solely from the
public and predefined channels are insufficient and biased.

3 PROBLEM STATEMENT
3.1 Graph Modeling of Traffic Data
Adhering to prior research on traffic prediction [2, 4, 10, 15, 18, 24,
45, 50], we depict traffic data as a sequence of graph signal frames
{𝑿1,𝑿2, ...,𝑿𝑇 }. The graph signal 𝑿𝑡 ∈ R𝑁×𝐹 denotes the obser-
vations defined on G at the 𝑡-th time slot, where 𝐹 is the feature
channel. The graph G = {V, E}, a.k.a. the spatial network2 con-
tains a node set V of size |V| = 𝑁 and an edge set E. The edges
E are represented by an adjacency matrix 𝑨 ∈ R𝑁×𝑁 , which is
usually built upon (i) pre-defined graphs like geographic distance
[6, 24, 48, 50]; (ii) domain knowledge based attributes similarity
[2, 3, 14]; or (iii) spatial correlations learned form data [4, 20, 45].
Particularly, method (iii) is the state-of-the-art to define adjacency
matrix, as it can learn spatial dependencies from data without prior
or domain knowledge.

3.2 Graph-based Traffic Prediction
Consider graph G and 𝑇𝑖𝑛 historical observations of graph signal
𝑿 (𝑡−𝑇𝑖𝑛+1) :𝑡 . Traffic prediction at time slot 𝑡 aims to learn a func-
tion 𝐹 (·) which maps the historical observations into the future
ones in the next 𝑇𝑜𝑢𝑡 time slots:

𝑿 (𝑡+1) :(𝑡+𝑇𝑜𝑢𝑡 ) ← 𝐹 (𝑿 (𝑡−𝑇𝑖𝑛+1) :𝑡 ;𝜃,G) (1)

where 𝜃 denotes all the learnable parameters. We use colons to
denote a temporal sequence. The optimal model parameters 𝜃∗ are
trained via the following objective.

𝜃∗ = argmin
𝜃
L(𝐹, 𝜃 ;D) (2)

where L represents the loss function of 𝐹 with parameters 𝜃 on
dataset D = {G,𝑿1:𝑇 }.

3.3 Federated Graph-based Traffic Prediction
Consider the client-server based federated learning, where𝑀 clients
(data owners), denoted by C = {C1, C2, ..., C𝑀 }, collaboratively
train models under coordination of a central server [31, 37].
• Data Partition. Assume client C𝑖 maintains a local traffic
dataset D𝑖 = {G𝑖 ,𝑿1:𝑇

𝑖 }, where G𝑖 = {V𝑖 , E𝑖 } is a local
graph of 𝑁𝑖 nodes. Note that G =

⋃𝑀
𝑖=1 G𝑖 is the complete

graph and 𝑁 =
∑𝑀
𝑖=1 𝑁𝑖 is the total number of nodes. Due

to the partition of G, the corresponding adjacency matrix

2Following the conventions [2, 4, 7, 8, 10, 15, 18, 24, 44, 45, 48, 50], we only consider
static homogeneous graphs with nodes and edges of the same type or class.

𝑨 ∈ R𝑁×𝑁 and graph signal 𝑿1:𝑇 ∈ R𝑇×𝑁×𝐹 are parti-
tioned across clients as

𝑨 =


𝑨11 · · · 𝑨1𝑀
...

. . .
...

𝑨𝑀1 · · · 𝑨𝑀𝑀

 ,𝑿
1:𝑇 =


𝑿1:𝑇
1
...

𝑿1:𝑇
𝑀

 (3)

where 𝑨𝑖 𝑗 ∈ R𝑁𝑖×𝑁 𝑗 is formed by rows and columns corre-
spond toV𝑖 andV𝑗 in 𝑨. Similarly, 𝑿1:𝑇

𝑖 ∈ R𝑇×𝑁𝑖×𝐹 is the
local graph signal for the 𝑁𝑖 nodes over 𝑇 time slots.
• Privacy Constraints. As is common in federated learning, the
server has no access to local datasets {D𝑖 }. Furthermore,
each client C𝑖 can share neither its own graph signals 𝑋 1:𝑇

𝑖
nor its local graph G𝑖 with any other clients. For example,
as a taxi company, the historical traffic data of its taxis, as
well as the correlations between taxis in various regions, are
considered sensitive business secrets not allowed to be dis-
closed or shared to others.
• Training Objectives. SinceD𝑖 embodies region-specific char-
acteristics that can be non-IID (independent and identically
distributed) across clients, we consider a personalized fed-
erated learning setting [12], where client-specific optimal
parameters 𝜃∗1 , ..., 𝜃

∗
𝑀 are trained with the objective below

{𝜃∗1 , ..., 𝜃
∗
𝑀 } = argmin

𝜃1,...,𝜃𝑀

𝑀∑
𝑖=1

𝑁𝑖
𝑁
L(𝐹𝑖 , 𝜃𝑖 ,D𝑖 ). (4)

Due to the privacy constraints, it is challenging to make full use
of the spatial dependencies (represented by 𝑨) for traffic predic-
tion. While intra-client spatial dependencies (𝑨𝑖 𝑗 for 𝑖 = 𝑗 ) can
be readily derived from local dataset D𝑖 [4, 20, 45], the extraction
of inter-client spatial dependencies (𝑨𝑖 𝑗 for 𝑖 ≠ 𝑗 ) is far from
straightforward due to the necessary data exchange across clients.

4 METHOD
This section presents FedGTP, a new federated graph-based traf-
fic prediction framework. It is built upon centralized ASTGNNs
(Sec. 4.1), with a novel spatial modeling formulation for the feder-
ated setting (Sec. 4.2). We then explain how to integrate the new
spatial modeling with temporal modeling (Sec. 4.3), and introduce
the overall system design and implementation of FedGTP (Sec. 4.4).

4.1 ASTGNNs for Federated Graph-based
Traffic Prediction

4.1.1 Primer on ASTGNNs. As with other STGNNs [6, 14, 24, 24,
48, 50], ASTGNNs [4, 20, 45] also consist of a spatial and a temporal
component. They adopt an Adaptive Graph Convolution Network
(AGCN) [4] for spatial modeling and Gated Recurrent Units (GRU)
[9] to capture temporal correlations. The core of ASTGNNs is the
AGCN layer, which introduces adaptive learning into the conven-
tional GCN layer [19]. Specifically, an AGCN layer contains a Data
Adaptive Graph Generation (DAGG) module inferring spatial de-
pendencies and a Node Adaptive Parameter Learning (NAPL) mod-
ule capturing node-specific patterns:

�̃� = 𝑰𝑁 + 𝜎
(
𝑬 · 𝑬⊤

)
, (5)

𝑯 (𝑙 ) = 𝜎
(
�̃� · 𝑯 (𝑙−1) · 𝑬 ·𝑾 + 𝑬 · 𝒃

)
, (6)
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where �̃� ∈ R𝑁×𝑁 is the adaptive adjacency matrix, 𝑰𝑁 ∈ R𝑁×𝑁 is
the identity matrix, each row of 𝑬 ∈ R𝑁×𝑑 presents the learnable
node embedding, 𝑯 (𝑙−1) ∈ R𝑁×𝐹 (𝑙−1) and 𝑯 (𝑙 ) ∈ R𝑁×𝐹 (𝑙 ) are the
input and output feature of the 𝑙-th layer,𝑾 ∈ R𝑑×𝐹 (𝑙−1)×𝐹 (𝑙 ) and
𝒃 ∈ R𝑑×𝐹 (𝑙 ) are the trainable weights and bias pool. 𝜎 (·) is the
nonlinear activation.

The AGCN layer is then integrated into GRU by replacing all the
linear layers in it with spatiotemporal feature fusion:

𝒛𝑡 = 𝜎
(
�̃� · [𝑿𝑡 | | 𝒉𝑡−1] · 𝑬 ·𝑾𝒛 + 𝑬 · 𝒃𝒛

)
𝒓𝑡 = 𝜎

(
�̃� · [𝑿𝑡 | | 𝒉𝑡−1] · 𝑬 ·𝑾𝒓 + 𝑬 · 𝒃𝒓

)
�̃�𝑡 = 𝑡𝑎𝑛ℎ

(
�̃� · [𝑿𝑡 | | (𝒓𝑡 ⊙ 𝒉𝑡−1)] · 𝑬 ·𝑾�̃� + 𝑬 · 𝒃�̃�

)
𝒉𝑡 = 𝒛𝑡 ⊙ 𝒉𝑡−1 + (1 − 𝒛𝑡 ) ⊙ �̃�𝑡 ,

(7)

where 𝑿𝑡 and 𝒉𝑡 are input and output at the 𝑡-th time slot. | | is the
concatenation operation. ⊙ is the Hadamard product. 𝒛, 𝒓 , and �̃�
are the update gate, reset gate and candidate state, respectively.

4.1.2 Challenges in Federated ASTGNNs. In the centralized setting,
both the graph signals 𝑿1:𝑇 and graph structure �̃� are gathered in
one place to train ASTGNNs. However, in the federated setting,
the node embedding matrix 𝑬 used to generate �̃� and the feature
matrix 𝑯 containing 𝑿1:𝑇 are partitioned into

𝑬 =


𝑬1
...

𝑬𝑀

 ,𝑯 =


𝑯1
...

𝑯𝑀

 (8)

and distributed across clients.
From the perspective of each single client C𝑖 , the 𝑙-th local layer

feature matrix can be expressed as

𝑯 (𝑙 )𝑖 = 𝜎 ©­«
𝑀∑
𝑗=1

(�̃�𝑖 𝑗 · 𝑯 (𝑙−1)𝑗 ) · 𝑬𝑖 ·𝑾 + 𝑬𝑖 · 𝒃ª®¬ . (9)

Omitting layer id for brevity, we let 𝒁𝑖 =
∑𝑀
𝑗=1 (�̃�𝑖 𝑗 · 𝑯 𝑗 ), which

embodies spatial dependencies and can be divided into

𝒁𝑖 = �̃�𝑖𝑖 · 𝑯𝑖 +
𝑀∑

𝑗=1, 𝑗≠𝑖

(�̃�𝑖 𝑗 · 𝑯 𝑗 ) . (10)

Following the terminologies in Sec. 3, �̃�𝑖𝑖 · 𝑯𝑖 is the intra-client
spatial dependencies with features available within C𝑖 , while �̃�𝑖 𝑗 ·
𝑯 𝑗 when 𝑖 ≠ 𝑗 is the inter-client ones that can only be calculated
involving other C𝑗 .

However, federated setting prohibits C𝑗 from sharing its graph
signals 𝑋 1:𝑇

𝑗 and graph structure G𝑗 to C𝑖 (see Sec. 3). Regarding
ASTGNNs, the privacy restrictions extend to 𝑬 𝑗 and 𝑯 𝑗 . Since 𝑬 𝑗
multiplied by itself would reveal �̃� 𝑗 𝑗 (see Eq. (5)), which leaks local
graph; and 𝑯 𝑗 contains 𝑋 1:𝑇

𝑗 . Such constraints pose challenges to
the establishment of spatial dependencies between clients.

To reconstruct the inter-client part of 𝒁𝑖 in federated setting,
a naive solution based on Eq. (5) is shown in Fig. 3a. Each client
first encrypts 𝑬𝑖 and 𝑯𝑖 , and uploads them to the server. Then the
server performs matrix calculation in ciphertext using approaches
like Homomorphic Encryption (HE) [40]. Finally, 𝒁𝑖 in ciphertext

𝑰! + 𝜎 	 %	…

𝑬! ∈ ℝ"!×$

…

𝑬 𝑬"

…

𝑯

(𝑨

(𝑨

% …

𝒁

𝑯! ∈ ℝ"!×%
𝒁! ∈ ℝ"!×% 𝒁& ∈ ℝ""×%𝑬& ∈ ℝ""×$
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…

(1)
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Figure 3: Illustration of approaches for computing inter-
client spatial dependency: (a) shows the naive encryption-
based solution; (b) presents our proposed solution, which
transfers ciphertext computation on server to plaintext com-
putation in local as much as possible.
is sent to each client and decrypted into plaintext. This solution in-
volves 𝑂

(
𝑁 2 (𝑑 + 𝐹 )

)
atomic operations in ciphertext, which can

be hundreds to thousands of times slower than its plaintext coun-
terpart [1], such a naive solution would cause tremendous compu-
tational costs. Thus, there is a need for more efficient alternatives
to calculate the inter-client spatial dependencies.

4.2 Learning Inter-Client Spatial Dependency
4.2.1 Reformulation of Spatial Modeling. To achieve inter-client
spatial dependency reconstruction more computational-efficiently
while preserving privacy, we reformulate the computation of spa-
tial modeling. The idea is to maximize local calculations which can
be performed in plaintext and reducing the time-consuming server-
side ciphertext operations (see Fig. 3b). Specifically, we decompose
�̃�𝑖 𝑗 into the product of two distinct parts, one pertains exclusively
to C𝑖 and the other to C𝑗 . However, a challenge arises from the non-
linear nature of the activation in Eq. (5) (i.e. ReLU in ASTGNNs),
which complicates privacy preservation. To address this, we pro-
pose an activation decomposition mechanism by applying an elabo-
rated transform function, denoted as F (·), to the node embedding
matrix of each client, so as to retain the necessary non-linearity
and allow effective restructuring of spatial modeling:

�̃�𝑖 𝑗 =

{
𝑰𝑁𝑖 + F (𝑬𝑖 ) · F⊤ (𝑬𝑖 ) if 𝑖 = 𝑗,

F (𝑬𝑖 ) · F⊤ (𝑬 𝑗 ) if 𝑖 ≠ 𝑗 .
(11)

Bringing it into Eq. (10), we obtain the new form:

𝒁𝑖 = 𝑯𝑖 + F (𝑬𝑖 ) ·
𝑀∑
𝑗=1

(
F⊤ (𝑬 𝑗 ) · 𝑯 𝑗

)
. (12)

According to Eq. (12), each clientC𝑖 first computes𝑨𝑮𝑮𝑖 = F⊤ (𝑬𝑖 )·
𝑯𝑖 locally in plaintext. This aggregated intermediate result is then
uploaded from each client to the server.The server conducts only a
simple summation and broadcasts the result

∑
𝑨𝑮𝑮 to each client

for the remaining local calculations. Since the intermediate results
uploaded to the server are aggregated rather than raw data, it com-
plies with privacy standards such as GDPR [38]. Next, we present
two designs of the transform function F (·).

4.2.2 Straight-forward Activation Decomposition. An intuitive op-
tion is to set F (·) to 𝑅𝑒𝐿𝑈 (·). This simple mechanism is named
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SprtReLU, as it reorders the ReLU activation to be applied sepa-
rately on each node embeddingmatrix before proceedingwith their
multiplication. Based on this, we can rewrite Eq. (5) as:

�̃�(𝑆𝑝𝑟𝑡𝑅𝑒𝐿𝑈 ) = 𝑰𝑁 + 𝑅𝑒𝐿𝑈 (𝑬) · (𝑅𝑒𝐿𝑈 (𝑬))⊤ , (13)

where for each adjacency block

�̃�(𝑆𝑝𝑟𝑡𝑅𝑒𝐿𝑈 )𝑖 𝑗 =

{
𝑰𝑁𝑖 + 𝑅𝑒𝐿𝑈 (𝑬𝑖 ) · (𝑅𝑒𝐿𝑈 (𝑬𝑖 ))⊤ if 𝑖 = 𝑗,

𝑅𝑒𝐿𝑈 (𝑬𝑖 ) ·
(
𝑅𝑒𝐿𝑈 (𝑬 𝑗 )

)⊤ if 𝑖 ≠ 𝑗 .
(14)

Therefore, the SprtReLU -version spatial dependencies

𝒁 (𝑆𝑝𝑟𝑡𝑅𝑒𝐿𝑈 )𝑖 = 𝑯𝑖 + 𝑅𝑒𝐿𝑈 (𝑬𝑖 ) ·
𝑀∑
𝑗=1

( (
𝑅𝑒𝐿𝑈 (𝑬 𝑗 )

)⊤ · 𝑯 𝑗

)
, (15)

where 𝑬𝑖 and 𝑯𝑖 are local within C𝑖 , then each term
(
𝑅𝑒𝐿𝑈 (𝑬 𝑗 )

)⊤ ·
𝑯 (𝑙−1)𝑗 can be computed within the corresponding C𝑗 . With the
help of server, a secure summation is implemented to achieve inter-
client spatial dependency reconstruction in federated context.

4.2.3 Polynomial-based Activation Decomposition. Although the
SprtReLU mechanism reconstructs inter-client spatial dependen-
cies at low computational costs, it suffers from performance degra-
dation due to the loss of crucial inter-client information. This loss
occurs because negative values in the embedding matrix are fil-
tered out prematurely, hindering themodel’s capacity to learn com-
plex nonlinear relationships. To this end, we introduce AdptPoLU,
which approximates 𝑅𝑒𝐿𝑈 activation by polynomials with adap-
tive coefficients learned from data. This method alleviates the loss
of inter-client information during activation decomposition.

It is well known that most non-linear activation functions can
be represented with polynomials through Taylor expansion. Nu-
merous studies [13, 30, 33, 36] have demonstrated the efficacy of
low-order polynomials in approximating𝑅𝑒𝐿𝑈 withminimal train-
ing error. Accordingly, we utilize a unified polynomial function to
approximate the activation and retain non-linearity.

Consider a 𝐾-order polynomial function

P𝐾 (𝑥) =
𝐾∑
𝑘=0

𝑝𝑘𝑥
𝑘 (16)

with coefficient set {𝑝0, 𝑝1, ..., 𝑝𝐾 } to be configured.We can rewrite
Eq. (5) as:

�̃�𝐾(𝐴𝑑𝑝𝑡𝑃𝑜𝐿𝑈 ) = 𝑰𝑁 + P𝐾 (𝑬 · 𝑬⊤) = 𝑰𝑁 +
𝐾∑
𝑘=0

(
𝑝𝑘 (𝑬 · 𝑬⊤)𝑘

)
. (17)

It is worth noting that the polynomials are applied on the matrix
(𝑬 · 𝑬⊤) after multiplication in an element-wise manner. For each
adjacency block between client C𝑖 and C𝑗 :

�̃�𝐾(𝐴𝑑𝑝𝑡𝑃𝑜𝐿𝑈 )𝑖 𝑗 =


𝑰𝑁𝑖 +

∑𝐾
𝑘=0

(
𝑝𝑘 (𝑬𝑖 · 𝑬⊤𝑖 )

𝑘
)

if 𝑖 = 𝑗,∑𝐾
𝑘=0

(
𝑝𝑘 (𝑬𝑖 · 𝑬⊤𝑗 )

𝑘
)

if 𝑖 ≠ 𝑗 .
(18)

To disentangle the node embedding matrices in each term (𝑬𝑖 ·
𝑬⊤𝑗 )

𝑘 for 𝑘 = 0, 1, ..., 𝐾 in this 𝐾-order polynomial function, we
propose a set of 𝐾 + 1 transforms:

F𝐾(𝐴𝑑𝑝𝑡𝑃𝑜𝐿𝑈 ) = {𝑓𝑘 (·)}
𝐾
𝑘=0, (19)

where the 𝑘-th transform 𝑓𝑘 (·) for the 𝑘-th polynomial satisfies:

(𝑬𝑖 · 𝑬⊤𝑗 )
𝑘 = 𝑓𝑘 (𝑬𝑖 ) · 𝑓 ⊤𝑘 (𝑬 𝑗 ) . (20)

Next, we propose concrete formulations of these transforms.

TheoRem 1. There exists a transform function set

F𝐾(𝐴𝑑𝑝𝑡𝑃𝑜𝐿𝑈 ) = {𝑓𝑘 (·)}
𝐾
𝑘=0 = {⊗

𝑘 (·)}𝐾𝑘=0 (21)

with𝐾+1 transform functions satisfying Eq. (20) with no information
loss. The operator ⊗𝑘 (·) transforms a matrix from R𝑁×𝑑 to R𝑁×𝑑

𝑘

by applying a 𝑘-th Cartesian power on each row.

Detailed proof is shown in appendix A.1. Based on this theorem,
we rewrite Eq. (17) as:

�̃�𝐾(𝐴𝑑𝑝𝑡𝑃𝑜𝐿𝑈 ) = 𝑰𝑁 +
𝐾∑
𝑘=0

(
𝑝𝑘 · ⊗𝑘𝑬 ·

(
⊗𝑘𝑬

)⊤)
, (22)

and rewrite Eq. (18) as:

�̃�𝐾(𝐴𝑑𝑝𝑡𝑃𝑜𝐿𝑈 )𝑖 𝑗 =


𝑰𝑁𝑖 +

∑𝐾
𝑘=0

(
𝑝𝑘 · ⊗𝑘𝑬𝑖 ·

(
⊗𝑘𝑬𝑖

)⊤)
if 𝑖 = 𝑗,∑𝐾

𝑘=0

(
𝑝𝑘 · ⊗𝑘𝑬𝑖 ·

(
⊗𝑘𝑬 𝑗

)⊤)
if 𝑖 ≠ 𝑗 .

(23)
Therefore, the spatial dependencies with 𝐾-order AdptPoLU

𝒁𝐾(𝐴𝑑𝑝𝑡𝑃𝑜𝐿𝑈 )𝑖 = 𝑯𝑖 +
𝐾∑
𝑘=0

©­«𝑝𝑘 · ⊗𝑘𝑬𝑖 ·
𝑀∑
𝑗=1

(
(⊗𝑘𝑬 𝑗 )⊤ · 𝑯 𝑗

)ª®¬ . (24)

The parameter 𝐾 is critical to balance accuracy and computational
complexity: a larger 𝐾 enhances accuracy but increases computa-
tional demands, and vice versa. We can adjust 𝐾 for different sce-
narios. Moreover, since the value distribution of model parameters,
especially the node embeddings vary throughout training, a static
set of 𝑝0, 𝑝1, ..., 𝑝𝐾 is sub-optimal. Instead, we dynamically learn
the polynomial coefficients from data. Each client C𝑖 is assigned a
unique set of coefficients 𝑷𝑖 = [𝑝𝑖,0, 𝑝𝑖,1, ..., 𝑝𝑖,𝐾 ].These coefficients
are iteratively refined using gradient descent in parallel with the
evolution of node embeddings.

4.2.4 Time Complexity Analysis. The time complexity of SprtReLU
is𝑂 (𝑑𝐹 (𝑀 + 𝑁 )), while forAdptPoLU, it is𝑂

(
𝑑𝐾𝐹 (𝑀 + 𝑁 )

)
. Both

expressions are presented in plaintext. Unlike the 𝑂
(
𝑁 2 (𝑑 + 𝐹 )

)
complexity in cyphertext of the naive encryption-based solution,
our method achieves a linear complexity (𝑂 (𝑁 )) instead of qua-
dratic complexity (𝑂 (𝑁 2)) with respect to the number of nodes 𝑁 .
This is particularly significant because, in real-world applications,
the number of nodes is often the primary scaling factor, and our
approach demonstrates improved scalability in this regard.

4.3 Integration with Temporal Modeling
To integrate the restructured spatial modeling with temporal mod-
eling into a cohesive federated ASTGNN model, we replace the
linear layers in GRU with our reformulated AGCN layers (similar
to Eq. (7)). We first redefine the spatial term 𝒁𝑖 , treating it as a
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Figure 4: Overview of the FedGTP System.
function with input 𝑯 , which varies across different GRU gates:

𝒁𝑖 (𝑯 ) = 𝑯𝑖 +
𝐾∑
𝑘=0

©­«𝑝𝑖,𝑘 · 𝑓𝑘 (𝑬𝑖 ) ·
𝑀∑
𝑗=1

(
𝑓 ⊤𝑘 (𝑬 𝑗 ) · 𝑯 𝑗

)ª®¬
= 𝑯𝑖 + 𝑷𝑖 · F𝐾 (𝑬𝑖 ) ·

𝑀∑
𝑗=1

(
F⊤𝐾 (𝑬 𝑗 ) · 𝑯 𝑗

)
.

(25)

Then, we obtain our federated ASTGNN at 𝑡-th time slot:

𝒛𝑡𝑖 = 𝜎
(
𝒁𝑖

(
[𝑿𝑡 | | 𝒉𝑡−1]

)
· 𝑬𝑖 ·𝑾𝑖,𝒛 + 𝑬𝑖 · 𝒃𝑖,𝒛

)
𝒓𝑡𝑖 = 𝜎

(
𝒁𝑖

(
[𝑿𝑡 | | 𝒉𝑡−1]

)
· 𝑬𝑖 ·𝑾𝑖,𝒓 + 𝑬𝑖 · 𝒃𝑖,𝒓

)
�̃�𝑡𝑖 = 𝑡𝑎𝑛ℎ

(
𝒁𝑖

(
[𝑿𝑡 | | (𝒓𝑡 ⊙ 𝒉𝑡−1)]

)
· 𝑬𝑖 ·𝑾𝑖,�̃� + 𝑬𝑖 · 𝒃𝑖,�̃�

)
𝒉𝑡𝑖 = 𝒛𝑡𝑖 ⊙ 𝒉

𝑡−1
𝑖 + (1 − 𝒛𝑡𝑖 ) ⊙ �̃�

𝑡
𝑖 ,

(26)

In the above equations, 𝑬𝑖 , 𝑷𝑖 ,𝑾𝑖,𝒛 ,𝑾𝑖,𝒓 ,𝑾𝑖,�̂�, 𝒃𝑖,𝒛 , 𝒃𝑖,𝒓 and 𝒃
𝑖,�̂� are

the learnable parameters for client C𝑖 , they can all be trained end-
to-end with back-propagation through time.

4.4 System Implementation and Analysis
4.4.1 System Implementation. Previous sections have detailed our
spatial modeling and its integration with temporal modeling in a
federated context. Now we present the system design and imple-
mentation for FedGTP training, where 𝑀 clients jointly train the
models under the orchestration of a server. To adapt to real feder-
ated scenarios where each client has its own computing machine,
we build up a system based on socket communication, allowing it
to be deployed on distributed environments in real world. Fig. 4
illustrates the overview of FedGTP system, and Algorithm 1-3 de-
tails the process.

In local training round, each client C𝑖 performs forward prop-
agation in parallel on the spatiotemporal model by Eq. (26) with
its local parameters. When inter-client spatial dependencies are
required, the activation decomposition mechanism is activated ac-
cording to Eq. (25). Each C𝑖 first transforms 𝑬𝑖 and aggregates it
with 𝑯𝑖 into 𝑨𝑮𝑮𝑖 containing local spatial information, which is
then uploaded to server. These aggregated intermediate results do
not violate privacy standards such as GDPR [38]. For enhanced
privacy protection, e.g. against inferences from intermediate re-
sults, we can employ established secure multi-party summation
methods such as Homomorphic Encryption [34], Secret Sharing

Algorithm 1: FedGTP Framework
input : Initial global model weights (𝑾 (0) , 𝒃 (0) , 𝑷 (0) );

Initial personalized node embeddings {𝑬 (0)𝑖 }
𝑀
𝑖=1;

The number of global and local rounds 𝑅𝑔, 𝑅𝑙 ;
output :Trained model weights (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 , 𝑬𝑖 ) for each C𝑖 ;

1 Initialize global model weights with (𝑾 (0) , 𝒃 (0) , 𝑷 (0) );
2 for each client C𝑖 ∈ C in parallel do
3 Initialize personalized node embeddings with 𝑬 (0)𝑖 ;
4 for global round 𝑟𝑔 = 1, 2, ..., 𝑅𝑔 do
5 for each client C𝑖 ∈ C in parallel do
6 Receives global model weights from server to

update𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 ;
7 for local round 𝑟𝑙 = 1, 2, ..., 𝑅𝑙 do
8 Forwards spatial-temporal modeling according

to Eq. (26), during which performs inter-client
spatial aggregation according to Eq. (25) (see
Algorithm 2).

9 Update (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 , 𝑬𝑖 ) through gradient descent.
10 Sends (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 ) to server;
11 Server performs 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐹𝑒𝑑𝐴𝑣𝑔 to update (𝑾𝑔, 𝒃𝑔, 𝑷𝑔);
12 return (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 , 𝑬𝑖 ) for each C𝑖 ;

Algorithm 2: Inter-Client Spatial Aggregation
input : Input state 𝑯 𝑡𝑖 on C𝑖 ;
output :Output state 𝒁𝑡𝑖 aggregating inter-client spatial

dependencies;
1 //Transform node embedding matrix
2 F𝐾 (𝑬𝑖 ) ← {𝑓𝑘 (𝑬𝑖 )}𝐾𝑘=0;
3 //Aggregation of local spatial dependencies
4 𝑨𝑮𝑮𝑖 ← F⊤𝐾 (𝑬𝑖 ) · 𝑯

𝑡
𝑖 ;

5 Send 𝑨𝑮𝑮𝑖 to server;
6 Receive

∑
𝑨𝑮𝑮 ← 𝑆𝑒𝑐𝑢𝑟𝑒𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 from server;

7 //Aggregation of inter-client spatial dependencies
8 𝒁𝑡𝑖 = 𝑯 𝑡𝑖 + 𝑷𝑖 · F𝐾 (𝑬𝑖 ) ·

∑
𝑨𝑮𝑮;

9 return 𝒁𝑡𝑖 ;

Algorithm 3: Functions on Server
1 SecureSummation:
2 Wait for each client to upload F⊤𝐾 (𝑬𝑖 ) · 𝑯

𝑡
𝑖 ;

3 Sum and broadcast
∑𝑀
𝑖=1

(
F⊤𝐾 (𝑬𝑖 ) · 𝑯

𝑡
𝑖

)
to clients;

4 PartialFedAvg:
5 Wait for each client to upload (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 );
6 (𝑾𝑔, 𝒃𝑔, 𝑷𝑔) ←

∑𝑀
𝑖=1

𝑁𝑖
𝑁 (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 );

[41], Differential Privacy [11], and other MPC Protocols [5, 25].
While the specifics of these secure summation techniques are be-
yond our scope, they serve as adaptable modules, balancing secu-
rity, accuracy, and efficiency according to the targeting scenarios.
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The server further aggregates the uploaded information by Secure-
Summation and broadcasts the cumulative result containing inter-
client spatial dependencies to clients for subsequent computations.
The learnable model parameters in C𝑖 include weight pool𝑾𝑖 , bias
pool 𝒃𝑖 , polynomial coefficients 𝑷𝑖 and node embedding matrix 𝑬𝑖 .
Note that 𝑬𝑖 contains local sub-graph-specific node embeddings
for each C𝑖 , and its size varies due to different node counts. To pre-
serve the private region-specific characteristics in the embeddings
and retain personalization, each client shares only (𝑾𝑖 , 𝒃𝑖 , 𝑷𝑖 ) for
partial aggregation (PartialFedAvg), while keeping 𝑬𝑖 local.

4.4.2 Communication Cost Analysis. The communication cost of
FedGTP is𝑂

(
|Θ| ·𝑀 · 𝑅𝑔 + (𝑀 · 𝑑𝐾 · 𝐹 ) · 𝑅𝑙

)
, which consists of two

parts.The first part,𝑂
(
|Θ| ·𝑀 · 𝑅𝑔

)
, arises from the aggregation of

model parameters, a common aspect of all current federated graph
learningmethods, where |Θ| denotes the model size. Since we keep
𝑬𝑖 personalized for each client, |Θ| is reduced. The second part,
𝑂
(
(𝑀 · 𝑑𝐾 · 𝐹 ) · 𝑅𝑙

)
, is due to the aggregation of inter-client spa-

tial dependency. Unlike state-of-the-art baselines which are pro-
portional [32] to or quadratic [27, 53] to 𝑁 , FedGTP incurs a cost
linearwith𝑀 , thanks to theActivationDecompositionMechanism.
Since each client manages hundreds to thousands of nodes locally,
𝑀 is orders of magnitude smaller than 𝑁 . Therefore our solution
results in much lower communication costs than these baselines in
the real-world cross-silo scenarios where 𝑁 is in the tens of thou-
sands, while𝑀 is usually around 10.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We test on the following real-world traffic datasets:
METR-LA, PeMS Data and TaxiFlow-BJ.METR-LA contains traffic
speed collected from the highway of the Los Angeles County road
network over 4 months. PeMS Data3 comprises detector data of
traffic speed, flow and occupancy from the Caltrans Performance
Measurement System (PeMS), and different subsets of PeMS Data
have been used in previous studies [4, 15, 32, 53]. TaxiFlow-BJ is
a dataset assembled by collecting data from five taxi companies
in Beijing, covering the period from June 1st to August 31st, 2013.
We preprocess the raw taxi trajectory data and map it to the road
network, which is obtained from OpenStreetMap4. Then, we iden-
tify the area with the highest concentration of mappings, which
encompasses 1905 road segments. Based on the matching results,
we can obtain traffic flow data for different road segments of each
company, which can then be used to conduct federated traffic pre-
dictions among five clients. In graph modeling of traffic data, each
node represents a sensor in METR-LA and PeMS Data, whereas
in TaxiFlow-BJ, each node corresponds to a road segment. More
details of the datasets are shown in Tab. 3.

5.1.2 Default Configuration and Environment. In the default hyper-
parameter configurations, the hidden feature dimension 𝐹 = 64
with 2 hidden layers. The embedding dimension 𝑑 = 2, and the
polynomial coefficient 𝐾 = 4. The learning rate 𝜂 = 0.003, and the

3http://pems.dot.ca.gov/
4https://www.openstreetmap.org/

batch size is 64. The models undergo 200 global epochs and 2 lo-
cal epochs. Additionally, both the validation ratio and the testing
ratio are set to 0.2. The performance metrics include Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and Mean Ab-
solute Percentage Error (MAPE). A lower value of these metrics
indicates a better prediction performance. All experiments are im-
plemented with PyTorch 1.13.1 and conducted on Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz and four NVIDIA A100-PCIE-40GB
GPUs with CUDA 11.6.

5.2 Baseline Comparison
5.2.1 Baselines and Settings. To evaluate the overall effectiveness
of our work, we align and compare FedGTP with state-of-the-art
baselines in distinct federated settings where they show best per-
formance. Due to the lack of available source code for some of these
baselines (except for CNFGNN), we rely on the results reported in
papers when our reproduced performance is sub-optimal. These
compared baselines can be classified into two categories:

Baselines overlooking inter-client spatial dependencies. This cat-
egory of baselines largely under-utilize inter-client spatial depen-
dencies due to privacy constraints, including:
• FASTGNN [53]: It introduces a federated attention-based
STGNN and constructs a random spatial connection among
clients. The attention-based STGNN consists of a two-layer
GRU,with layer dimensions of 64 and 256 respectively, along
with a graph attention network. Following the setting in
[53], we conduct traffic speed prediction on the PeMSD7
with𝑀 = 4, 𝑇𝑖𝑛 = 12 and 𝑇𝑜𝑢𝑡 = 9.
• MFVSTGNN [27]: It introduces a FL-based traffic forecast-
ing model that utilizes a Variational Graph AutoEncoder
(VGAE) to enhance intra-client dependencies and employs
STGNNs for prediction. We compare our results with those
reported in [27], which are the best (using Graph WaveNet
for prediction) on the PEMS-BAY and METR-LA, with 𝑀 =
8, 𝑇𝑖𝑛 = 12, and 𝑇𝑜𝑢𝑡 = 12.
• FLoS [43]: It constructs a FL framework with opportunistic
client selection for traffic flow prediction. The local model
uses GRU and GCN to capture spatial-temporal dependen-
cies, and the hidden dimension is set to 32. The results are
based on the PeMSD4 with𝑀 = 5, 𝑇𝑖𝑛 = 24, and 𝑇𝑜𝑢𝑡 = 12.

Baselines considering inter-client spatial dependencies. This cate-
gory of baselines treat inter-client spatial dependencies as public
and predefined, including:
• CNFGNN [32]: It uses a GRU-based model on each node
(client) to extract the temporal features with local data, and
performs GNN with a pre-defined graph on the server to
capture inter-node spatial dependencies.Themodel on each
node has 1 layer GRUwith the hidden dimension of 64, while
the model on the server is a 2-layer GNN. Following the
same setting as in [32], we predict the traffic speed on PEMS-
BAY and METR-LA with 𝑇𝑖𝑛 = 12 and 𝑇𝑜𝑢𝑡 = 12.
• FCGCN [47]: It proposes a framework that combines a two-
layer GCN with FL. Both GCN layers include a ReLU activa-
tion. To ensure a fair comparison, we compare our approach
with FCGCN in a setting where all clients participate in the
FL aggregation process. The results are employed to predict
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Table 1: Comparison of performance on the traffic predic-
tion task between FedGTP and baselines which do not con-
sider inter-client spatial dependencies.

baseline federated setting task method RMSE MAE MAPE(%)
FASTGNN

[53]
PeMSD7

(4 clients, 12->9)5 speed FASTGNN 5.83 3.50 8.36
FedGTP 4.73 2.60 5.88

MFVSTGNN
[27]

PEMS-BAY
(8 clients, 12->12) speed MFVSTGNN 3.91 1.93 4.48

FedGTP 3.88 1.79 3.54

METR-LA
(8 clients, 12->12) speed MFVSTGNN 4.45 3.35 9.42

FedGTP 4.41 3.23 8.75

FLoS
[43]

PeMSD4
(5 clients, 24->12) flow FLoS 42.84 28.64 -6

FedGTP 41.33 25.62 -

traffic flow, speed, and occupancy on the PeMS04 (𝑀 = 28)
and PeMS08 (𝑀 = 14) with 𝑇𝑖𝑛 = 6 and 𝑇𝑜𝑢𝑡 = 1.
• CTFL [54]: It designs a clustering-based FL framework for
STGNNs to forecast traffic speed in the federated scenario.
We utilize the results reported in [54], which include two
STGNNs, namely STGCN[50] and MTGNN[46]. The experi-
ments were conducted on PeMSD4 and PeMSD7with𝑀 = 8,
𝑇𝑖𝑛 = 12 and 𝑇𝑜𝑢𝑡 = 9.

5.2.2 Results and Analysis. Tab. 1 and Tab. 2 present the compar-
ison of prediction performance between FedGTP and the two cat-
egories of baselines. From Tab. 1 we can observe that our pro-
posed FedGTP exhibits superior performance to the counterparts
[27, 43, 53] that also protect spatial privacy, owing to the ability
of FedGTP to fully recover and exploit the disrupted inter-client
spatial dependencies. Moreover, as shown in Tab. 2, FedGTP con-
sistently outperforms its competitors [32, 47, 54] that utilize inter-
client spatial dependencies. This is primarily because these base-
lines rely on predefined spatial graphs, whereas FedGTP adaptively
uncovers and leverages more profound inter-client spatial depen-
dencies. Additionally, FedGTP provides stronger privacy protec-
tion compared to these baselines, as they treat the spatial graph
as public. The overall results indicate that our proposed FedGTP
has improved over existing works on average by 21.08%, 13.48%,
19.90% decrease on RMSE, MAE and MAPE, respectively.

5.3 Ablation Studies
5.3.1 Impact of Inter-Client Spatial Dependency Reconstruction. To
quantitatively investigate the impact of inter-client spatial depen-
dency reconstruction on the performance of FedGTP, we randomly
eliminate these dependencies reconstructed involving each client
and evaluate the prediction accuracy across a spectrum of elimina-
tion rates at {0.0, 0.5, 1.0}. Here, 𝜌 = 0.0 represents the full utiliza-
tion of inter-client spatial dependencies, whereas 𝜌 = 0.5 indicates
a partial, 50% elimination, and 𝜌 = 1.0 corresponds to the complete
elimination of these reconstructed dependencies. Due to space lim-
itation, we present in Fig. 5a the normalized error in form of the
three metrics on only PeMSD7 (results on other datasets are simi-
lar, shown in A.2).We can observe that the errors rise by around 8%
upon the elimination of half the inter-client spatial dependencies,

5The notation “𝑇𝑖𝑛 ->𝑇𝑜𝑢𝑡 ” is used to indicate the prediction of𝑇𝑜𝑢𝑡 time slots based
on the previous𝑇𝑖𝑛 slots.
6The absence of values for certain baselines in the table is due to the inability to
replicate these models and the lack of reported metrics in the original publications.
The same applies to Tab. 2.

Table 2: Comparison of performance on the traffic predic-
tion task between FedGTP and and baselines which consider
inter-client spatial dependencies as public and predefined.

baseline federated setting task method RMSE MAE MAPE(%)

CNFGNN
[32]

PEMS-BAY
(325 clients, 12->12) speed CNFGNN 3.7090 2.3528 4.82

FedGTP 3.6440 1.6813 3.35

METR-LA
(207 clients, 12->12) speed CNFGNN 11.4137 7.5161 36.26

FedGTP 10.3978 4.2883 24.83

FCGCN
[47]

PeMSD4
(28 clients, 6->1)

flow FCGCN 29.6775 18.6483 22.57
FedGTP 26.6993 17.9049 13.99

speed FCGCN 1.8777 1.0008 1.84
FedGTP 1.6800 0.9493 1.72

occ FCGCN 0.1181 0.0066 18.92
FedGTP 0.0126 0.0064 16.03

PeMSD8
(14 clients, 6->1)

flow FCGCN 22.4601 14.7723 11.81
FedGTP 20.4897 13.7754 9.09

speed FCGCN 1.5570 0.8228 1.54
FedGTP 1.4221 0.7616 1.35

occ FCGCN 0.0598 0.0058 12.91
FedGTP 0.0110 0.0054 10.05

CTFL
[54]

PeMSD4
(8 clients, 12->9) speed

CTFL-STGCN 4.87 - 4.84
CTFL-MTGNN 4.91 - 4.79

FedGTP 3.42 - 3.78

PeMSD7
(8 clients, 12->9) speed

CTFL-STGCN 5.25 - 7.08
CTFL-MTGNN 5.23 - 7.08

FedGTP 4.89 - 6.88

with a surge of up to 16.47% in error when these dependencies are
completely removed. From the above results, we can conclude that
the full reconstruction of inter-client spatial dependencies indeed
boosts the accuracy of traffic prediction.

5.3.2 Impact of Activation Decomposition. To evaluate the effec-
tiveness of our proposed activation decomposition mechanism, in-
cluding SprtReLU and AdptPoLU, we run experiments on PeMSD7
(results on other datasets are similar, shown in A.2) with ctr and
sgl as two controls. The term ctr denotes centralized training with
all sub-graphs from clients joined together.The term sgl represents
each single client training solely based on its local data. From the
results in Fig. 5(b)-(d), we obtain the following observations:
• The SprtReLU mechanism can help improve prediction accu-
racy compared to sgl by utilizing inter-client spatial depen-
dency under privacy constraints. However, there is still a
non-negligible gap compared to ctr due to information loss.
• TheAdptPoLU mechanism can compensate the performance
gap between SprtReLU and ctr by using adaptive polynomial
approximation.AdptPoLU has the similar performance with
SprtReLU when 𝐾 = 2, and performs almost close to ctr,
which we regard as optimal, when 𝐾 rises to 4.
• The AdptPoLU mechanism will accelerate the convergence
of training process when𝐾 rises, and sometimes it may even
outperform ctr in RMSE (see Fig. 5c). We attribute it to the
adaptive coefficients facilitating the training process.

5.4 Case Study
To develop an in-depth understanding of inter-client spatial depen-
dency rooted in practical scenarios, we conduct a case study with
the TaxiFlow-BJ dataset, which contains traffic data of five distinct
taxi companies (each serving as a client), to carry out federated
traffic flow prediction.
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Figure 5: Ablation results on impact of inter-client spatial
dependency (a) and activation decomposition (b)-(d).
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Figure 6: The strong correlation between performance im-
provement and the learned dependencies.

Firstly, we compare our FedGTP incorporating inter-client de-
pendency against thatwithout it, discovering that the former yields
a decrease in MAE by around 3%. To delve deeper, we explore
the relationship between the MAE decrease for each node and the
adaptively learnedweights of inter-client edges connecting it, which
are determined through the product of node embeddings. Specifi-
cally, we select the top 20% nodes with the largest decrease inMAE
as the most benefited ones. Regarding the extensive number of
edges, we focus on the top 𝑝 edges with the largest weights, which
denote the key inter-client spatial dependencies. Fig. 6 illustrates
the proportion of edges linked to the benefited nodes against those
not linked, with 𝑝 ranging from 20 to 200. We can observe that
over 69% of these critical edges are linked to nodes exhibiting re-
markable performance enhancement. This proportion reaches 95%
especially for the top 20 edges, far exceeding the average proba-
bility level of 36%. This indicates that the adaptively learned inter-
client connections play a vital role in reducing prediction errors,
especially through effectively excavating complex relationships be-
tween nodes, thereby enhancing overall prediction accuracy.

Furthermore, we present a concrete example to demonstrate
how adaptively learned inter-client spatial dependencies contribute
to performance improvement. We focus our gaze on one of the sig-
nificantly benefited nodes and its associated key dependencies. As
depicted in Fig. 7, this node is identified as a road segment near

road segment with high 
performance improvement

associated road segment
(color refers to different clients)

school location

Figure 7: Case study of a concrete node with significant per-
formance improvement.
a school, besides, all nodes linked through these dependencies are
also road segments in the school surroundings. This observation
complies to the intuition that the same functional areas possess
similar spatiotemporal characteristics, and it is logical to infer that
such semantic dependencies can enhance prediction performance.
This example also underlines that even though the data of these in-
teracted road segments are dispersed across multiple clients with
no direct access, our method can still overcome this barrier to fully
utilize and learn the inter-client spatial dependencies.

6 CONCLUSION
In this paper, we propose FedGTP, a pioneering framework de-
signed for federated graph-based traffic prediction that fully ex-
ploits inter-client spatial dependencies with privacy preservation.
FedGTP progresses by adaptive learning of inter-client spatial de-
pendencies, enabling deeper exploration of spatial relationships
and thus boosting prediction performance. For privacy protection,
we then introduce an innovative polynomial-based activation de-
compositionmechanism that ensures compliance with privacy reg-
ulations like GDPR during the reconstruction of inter-client spatial
dependencies. Extensive experiments on real-world traffic datasets
have been conducted to validate our approach. The results demon-
strate that FedGTP significantly outperforms existing baselines in
prediction performance, achieving near-optimal results while ad-
hering to privacy constraints, thus confirming its effectiveness. Fu-
ture work will aim at improving FedGTP’s communication effi-
ciency to address challenges arising from asynchronous scenarios
for better accommodation in large-scale applications.
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A APPENDIX
A.1 Proof of Theorem 1

PRoof. Without loss of generality, we focus on an arbitrary el-
ement 𝑒𝑟,𝑠 on the 𝑟 -th row and 𝑠-th column of the matrix (𝑬𝑖 · 𝑬⊤𝑗 )
after multiplication, where 1 ≤ 𝑟 ≤ 𝑁𝑖 and 1 ≤ 𝑠 ≤ 𝑁 𝑗 . It is re-
sulted from the inner product of the 𝑟 -th row vector of 𝑬𝑖 and the
𝑠-th row vector of 𝑬 𝑗 :

𝑒𝑟,𝑠 =
〈
𝒆𝑖,𝑟 , 𝒆 𝑗,𝑠

〉
,

the 𝑘-th power of which is

𝑒𝑘𝑟,𝑠 =
©­­­«
[
𝑒1𝑖,𝑟 · · · 𝑒𝑑𝑖,𝑟

]
·


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...

𝑒𝑑𝑗,𝑠


ª®®®¬
𝑘

=
(
𝑒1𝑖,𝑟𝑒

1
𝑗,𝑠 + 𝑒

2
𝑖,𝑟𝑒

2
𝑗,𝑠 + ... + 𝑒

𝑑
𝑖,𝑟𝑒

𝑑
𝑗,𝑠

)𝑘
=
〈(
𝒆𝑖,𝑟 ⊗ 𝒆𝑖,𝑟 ⊗ · · · ⊗ 𝒆𝑖,𝑟

)
,
(
𝒆 𝑗,𝑠 ⊗ 𝒆 𝑗,𝑠 ⊗ · · · ⊗ 𝒆 𝑗,𝑠

)〉
=
〈
⊗𝑘𝒆𝑖,𝑟 , ⊗𝑘𝒆 𝑗,𝑠

〉
,

where ⊗ denotes the Cartesian product between vectors, and ⟨·, ·⟩
indicates the inner product between vectors.

Therefore,
(𝑬𝑖 · 𝑬⊤𝑗 )

𝑘 = (⊗𝑘𝑬𝑖 ) · (⊗𝑘𝑬 𝑗 )⊤,

and we can set 𝑓𝑘 (𝑬𝑖 ) = ⊗𝑘𝑬𝑖 . □

A.2 Additional Experiment Results

Table 3: Statistics of datasets.
Dataset Period(m/d/y) #Intervals #Nodes Max Min Mean Median Std
METR-LA 03/01/12-06/30/12 34272 207 70 0 53.719 62.4444 20.2614
PEMS-BAY 01/01/17-05/31/17 52116 325 85.1 0 62.6196 65.3 9.5944

PeMSD4
Flow

01/01/18-02/28/18 16992 307
919 0 211.7008 180 158.0684

Occupancy 0.7716 0 0.0528 0.0443 0.0495
Speed 85.2 3 63.4706 65.6 8.3557

PeMSD8
Flow

07/01/16-08/31/16 17856 170
1147 0 230.6807 215 146.217

Occupancy 0.8955 0 0.0651 0.0601 0.0459
Speed 82.3 3 63.763 64.9 6.652

PeMSD7 05/01/12-06/30/12 12672 228 82.6 3 58.8892 64.1 13.4833

Fig. 8-Fig. 15 are results of ablation studies on more datasets.
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Figure 8: Ablation results on impact of inter-client depen-
dency (a) and activation decomposition (b)-(d) onMETR-LA.
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Figure 9: Ablation Study on inter-client spatial dependency
(a) and activation decomposition (b)-(d) on PEMS-BAY.
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Figure 10: Ablation Study on inter-client spatial dependency
(a) and activation decomposition (b)-(d) on PeMSD4-FLOW.



KDD ’24, August 25–29, 2024, Barcelona, Spain. Linghua Yang et al.

MAE RMSE MAPE
Metrics

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.42% 3.09%
1.10%

4.39% 3.12% 4.28%

ρ= 0.0

ρ= 0.5

ρ= 1.0

(a) Impact of inter-client spatial depen-
dency on performance

20 40 60 80 100 120 140 160 180 200
Training epochs

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

M
AE

ctr
sgl
sprtrelu
adptpolu (K=2)
adptpolu (K=3)
adptpolu (K=4)

(b) Impact of activation decomposition on
MAE

20 40 60 80 100 120 140 160 180 200
Training epochs

0.018

0.020

0.022

0.024

0.026

0.028

RM
SE

ctr
sgl
sprtrelu
adptpolu (K=2)
adptpolu (K=3)
adptpolu (K=4)

(c) Impact of activation decomposition on
RMSE

20 40 60 80 100 120 140 160 180 200
Training epochs

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

M
AP

E

ctr
sgl
sprtrelu
adptpolu (K=2)
adptpolu (K=3)
adptpolu (K=4)

(d) Impact of activation decomposition on
MAPE

Figure 11: Ablation Study on inter-client spatial dependency (a) and activation decomposition (b)-(d) on PeMSD4-OCCUP.
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Figure 12: Ablation Study on inter-client spatial dependency (a) and activation decomposition (b)-(d) on PeMSD4-SPEED.
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Figure 13: Ablation Study on inter-client spatial dependency (a) and activation decomposition (b)-(d) on PeMSD8-FLOW.
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Figure 14: Ablation Study on inter-client spatial dependency (a) and activation decomposition (b)-(d) on PeMSD8-OCCUP.
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Figure 15: Ablation Study on inter-client spatial dependency (a) and activation decomposition (b)-(d) on PeMSD8-SPEED.
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