

Approximate k-Nearest Neighbor Query over Spatial Data Federation

Kaining Zhang¹, Yongxin Tong¹, Yexuan Shi¹, <u>Yuxiang Zeng</u>^{1,2}, Yi Xu¹, Lei Chen², Zimu Zhou³, Ke Xu¹, Weifeng Lv¹, Zhiming Zheng¹

¹Beihang University ²The Hong Kong University of Science and Technology ³City University of Hong Kong

Outline

Background

Problem Definition

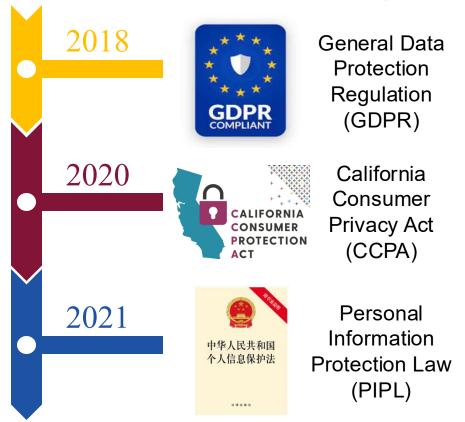
Our Solution

Experiment

Conclusion

Data fragmentation and isolation

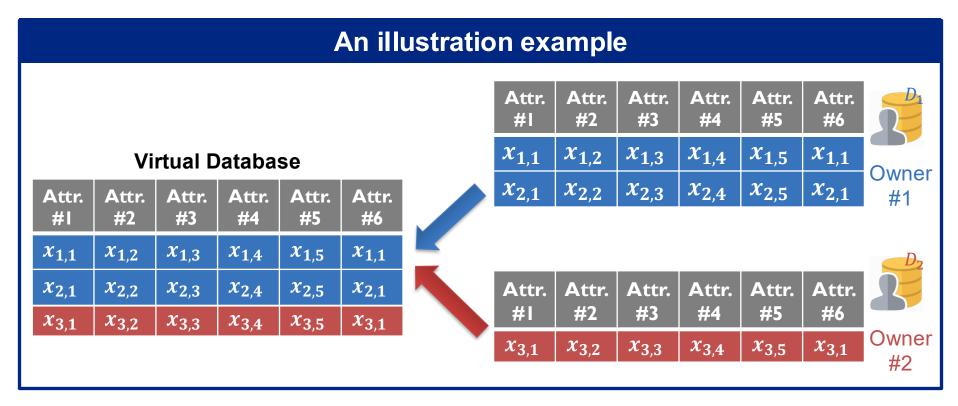
- Data is the new oil
- Data exists in the form of isolated islands

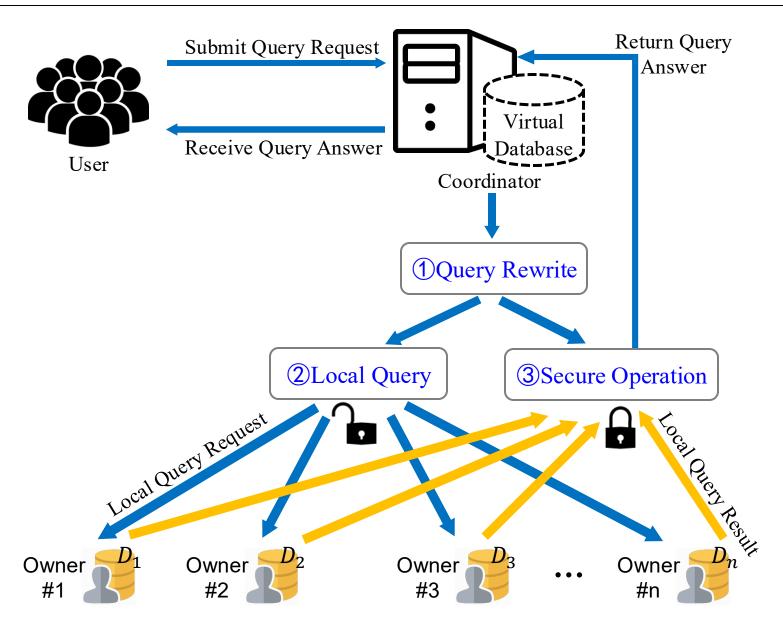


"The world's most valuable resource is no longer oil, but data" [1].

"In most industries, data exists in the form of isolated islands" [2].

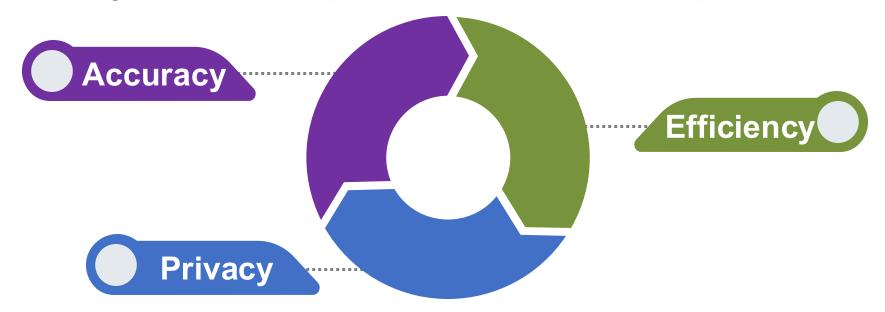
Data fragmentation and isolation


• Due to industry competition, data privacy, etc., "it is difficult to integrate the data scattered around institutions, or the cost is prohibited" [2]

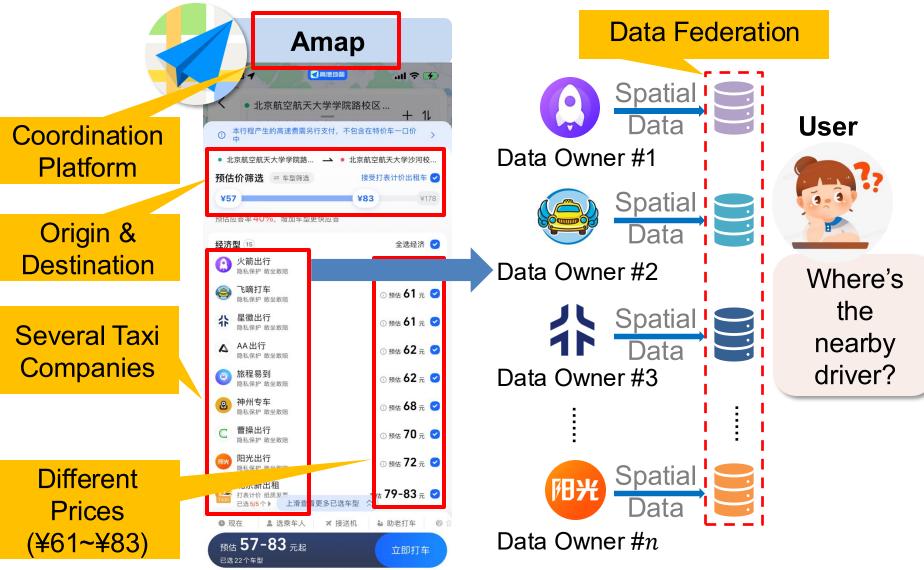


What is Data Federation?

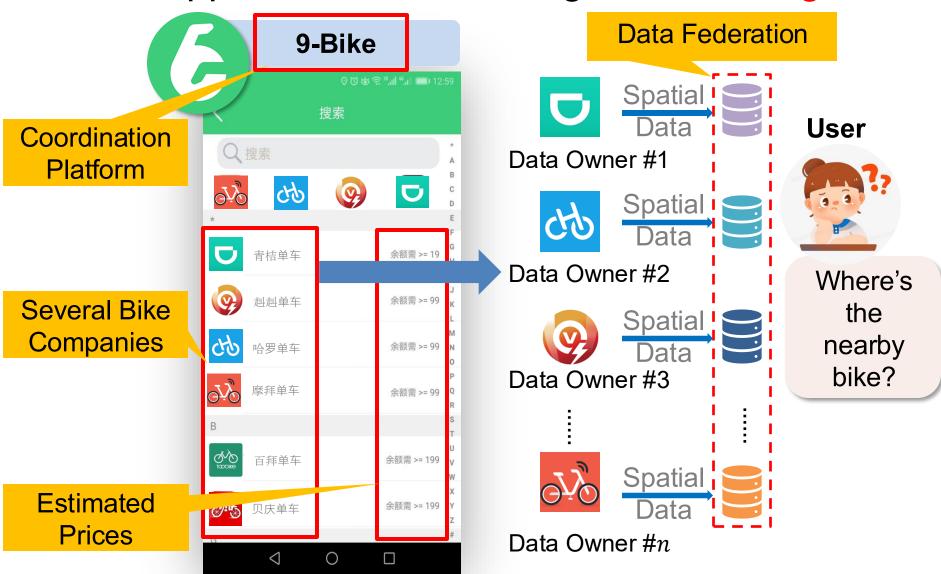
• Data federation[3]: a set of data owners support a common schema, and each holds a horizontal partition (i.e., a subset of rows) [4] of the table



Workflow of data federation system


Challenges in Data Federation

- Accuracy
 - E.g., whether the query result is accurate enough
- Efficiency
 - E.g., whether the query efficiency can be real time
- Privacy
 - E.g., whether the private information is well protected


Spatial Data Federation

Real applications: taxi calling, bike sharing, etc.

Spatial Data Federation

Real Applications: taxi calling, bike sharing, etc.

Approximate *k***NN Query**

 Approximate kNN query plays an important role in applications of data federation

Outline

Background

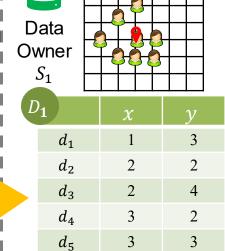
Problem Definition

Our Solution

Experiment

Conclusion

Basic Concepts


- Data owner S_i
 - Hold a local dataset D_i
 - o Contains spatial objects $d_1, d_2, ..., d_{|D_i|}$
 - He is not willing to share his raw data with other data owners S_i ($j \neq i$) directly
- Spatial data federation $F = \{S_1, S_2, ..., S_n\}$
 - Virtual dataset $D = D_1 \cup D_2 \cup \cdots \cup D_n$
 - Local dataset D_i is a horizontal partition
 - Coordinate data owners to answer spatial queries

Problem Definition

- Approximate kNN Query over Spatial Data Federation ("federated approximate kNN")
 - Given:
 - Spatial data federation F, query object l_a , integer k
 - Goal:
 - A set res that contains k spatial objects from F to maximize the accuracy δ (a popular metric [5,6])
 - $\delta = \frac{|res \cap res^*|}{k}$, where res^* is the answer of exact kNN
 - Constraint:
 - Security constraint: a data owner cannot infer any sensitive information from others except for res
 - Assumption: attackers are s
 other spatial objects
- [5] Wen Li, et al. Approximate Nearest Neighbor Search on High Dimensional Data Experiments, Analyses, and Improvement. IEEE TKDE 2020

^[6] Mengzhao Wang, et al. A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest Neighbor Search. PVLDB 2021

Spatial
Data
Federation
F

4

5

2

3

res

Da	ata /ner				
	1				
D	2	χ	у		
	d_1	1	5		
	d_2	2	1		
	d_3	2	3		
	d_4	3	2		
	d_5	3	3		
	$d_6 \ d_7$	3	4		
	d_7	4	3		
	do	5	4		

	wner S_3	20	2
L)3	x	y
	d_1	1	2
	$d_1 \\ d_2$	1	5
	d_3	2	2
	d_4	2	4
	d_5	3	4
	d_6	4	3
	$egin{array}{c} d_6 \ d_7 \ d_8 \end{array}$	5	1
	d_8	5	5

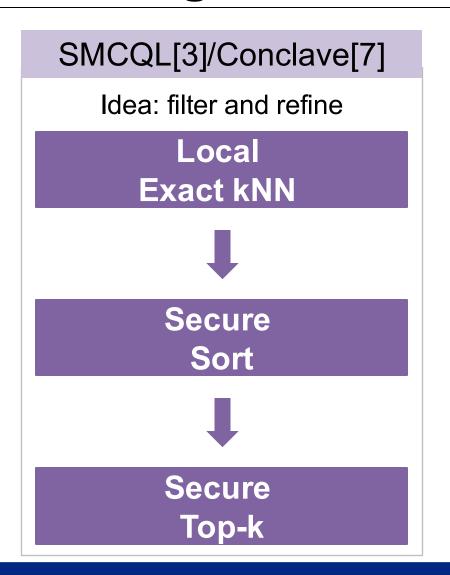
Data

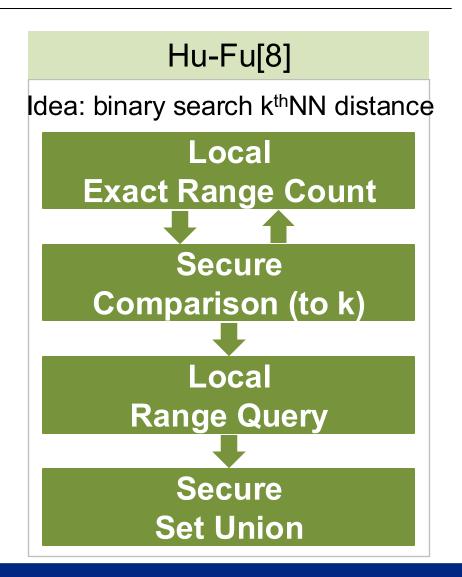
$l_q = (3,3)$
Integer
k = 8

Query

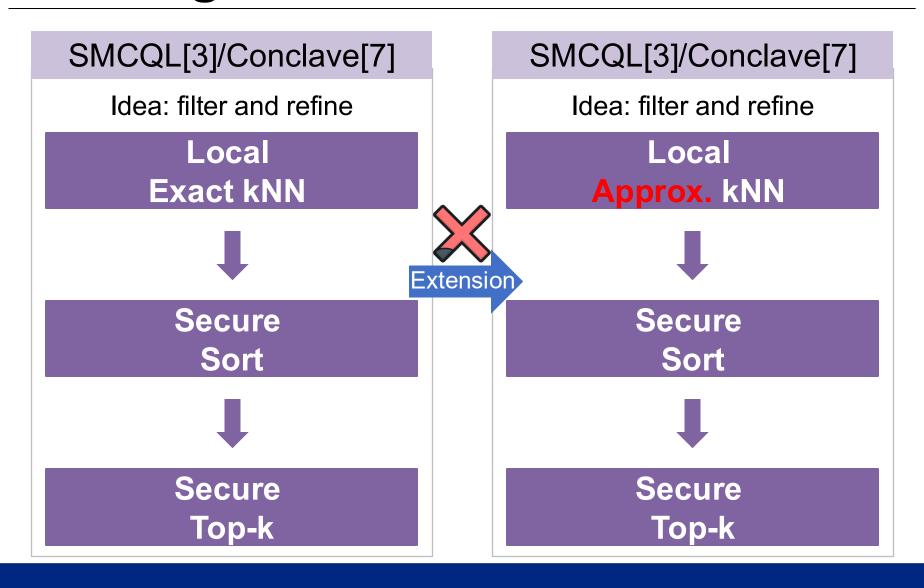
object

$res \cap res^* = \{d_1, d_2,$	$\{d_3, d_4, d_5, d_6\}$
$\delta = \frac{ res \cap res^* }{k} =$	$\frac{6}{8} = 75\%$

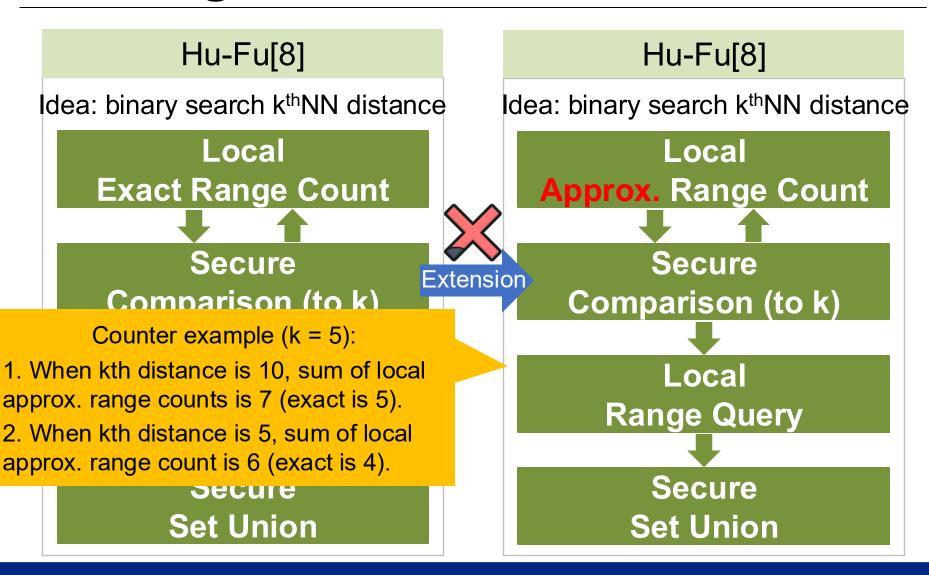

 d_6


 d_7

 d_8


п	~8		•		48		
1				- <u></u>			
		X	<u>y</u>		x	y	res*
	d_1	3	3	d_1	3	3	1
	d_2	3	3	d_2	3	3	1
	d_3	3	2	d_3	3	2	i
	d_4	3	2	d_4	3	2	1
	d_5	3	4	d_5	3	4	1
	d_6	4	3	d_6	4	3	1
	d_7	2	4	d_7	4	3	_
	d_8	2	1	d_8	4	3	

Existing Work: Exact Solution



Existing Work: Extension

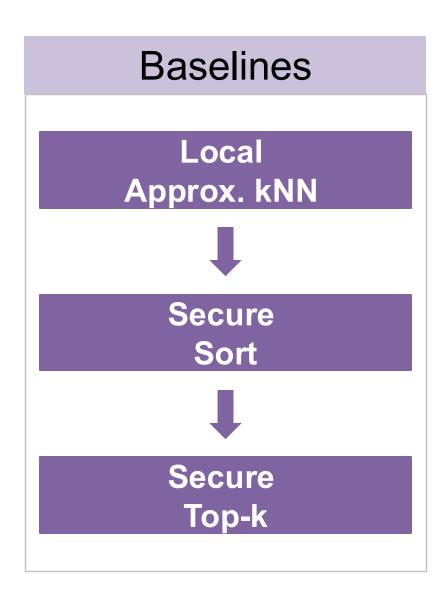
Efficiency can be improved but with a very small margin

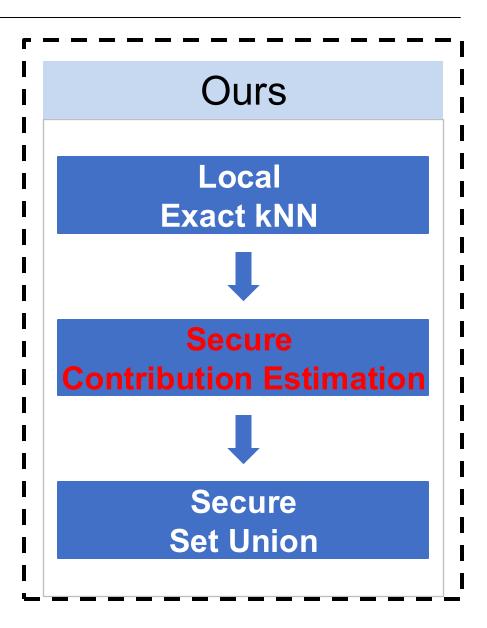
Existing Work: Extension

Convergence of kth NN distance becomes inaccurate

Outline

Background


Problem Definition


Our Solution

Experiment

Conclusion

Our Framework

Our One-Round (OR) Algorithm

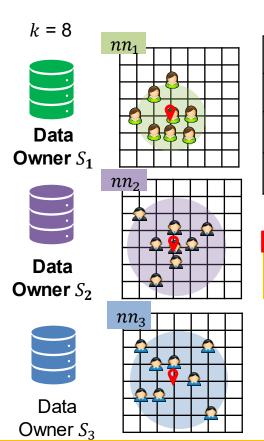
Main Idea:

- Warm-up: if we know the contribution of each data owner to the final answer, say $\{k_i\}$, then perform local k_i NN and securely unite partial results
- Challenge: how to securely estimate contribution
 - Intuition: a data owner, whose kth nearest neighbor is closer, he tends to take more contributions
 - S1. Get local exact kNN and kthNN distance r_i
 - S2. Compute each data owner's density
 - S3. Compute contribution proportional to density
 - S4. Collect final answer by secure set union

- ullet Get local exact kNN and kthNN distance r_i
 - $nn_1 \leftarrow \text{local exact kNN of } S_1, r_1 \leftarrow max_{j \in [1,k]} dis(l_{nn_1[j]}, l_q)$
 - $nn_2 \leftarrow \text{local exact kNN of } S_2, r_2 \leftarrow max_{j \in [1,k]} dis(l_{nn_2[j]}, l_q)$
 - $nn_3 \leftarrow \text{local exact kNN of } S_3, r_3 \leftarrow max_{j \in [1,k]} dis(l_{nn_3[j]}, l_q)$

k = 8	
Data Owner S_1	
Data Owner S_2	
Data Owner S_3	nn_3

	r_i
S_1	2
S_2	$2\sqrt{2}$
S_3	$2\sqrt{2}$


- Compute each data owner's density $k/area_i$
 - $area_1 \leftarrow \pi(r_1)^2$, $density_1 \leftarrow k/4\pi$
 - $area_2 \leftarrow \pi(r_2)^2$, $density_2 \leftarrow k/8\pi$
 - $area_3 \leftarrow \pi(r_3)^2$, $density_3 \leftarrow k/8\pi$

k = 8	_
	nn_1
Data	2 000
Owner S_1	
Data	
Owner S_2	
	nn_3
Data Owner S_3	V

	r_i	area _i	density _i
S_1	2	4π	$k/4\pi$
S_2	$2\sqrt{2}$	8π	$k/8\pi$
S_3	$2\sqrt{2}$	8π	k/8π

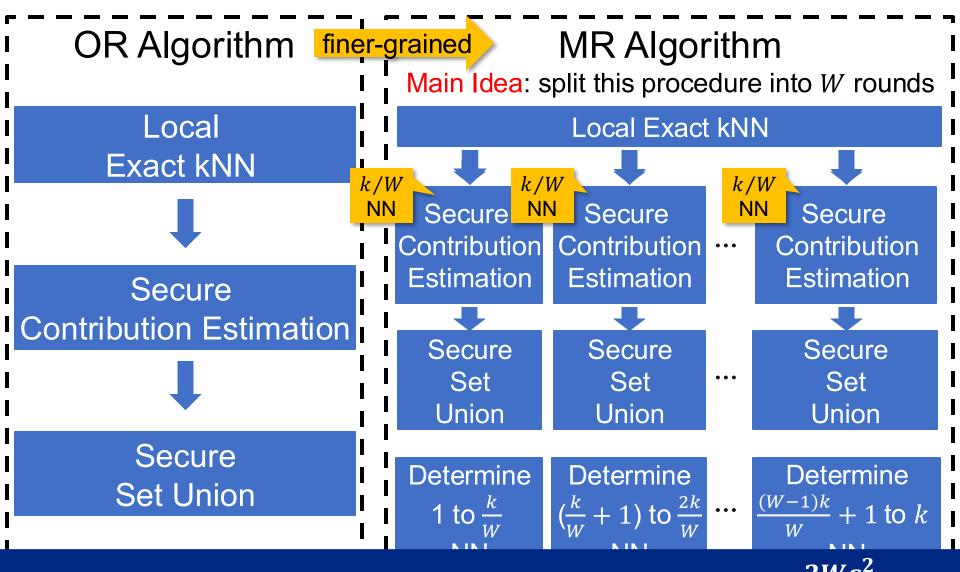
- Compute contribution proportional to density
 - Compute sum of density by secure summation protocol in [9]


o
$$sum = SecureSum\left(\frac{k}{4\pi}, \frac{k}{8\pi}, \frac{k}{8\pi}\right) = \frac{k}{2\pi}$$

	r_i	$area_i$	$density_i$
S_1	2	4π	$k/4\pi$
S_2	$2\sqrt{2}$	8π	$k/8\pi$
S_3	$2\sqrt{2}$	8π	k/8π

 $sum = SecureSum\left(\frac{k}{4\pi}, \frac{k}{8\pi}, \frac{k}{8\pi}\right) = \frac{k}{2\pi}$

- Compute contribution proportional to density
 - Compute sum of density by secure summation protocol in [9]
 - Compute contribution $k_i = k \times \frac{density_i}{sum}$, $sum = \sum_i density_i = \frac{k}{2\pi}$


	r_i	area _i	$density_i$	k_i
S_1	2	4π	$k/4\pi$	k/2
S_2	$2\sqrt{2}$	8π	$k/8\pi$	k/4
S_3	$2\sqrt{2}$	8π	k/8π	k/4

- Collect final answer by secure set union
 - Each data owner pick k_i NN as the partial answer
 - Collect partial answers by secure set union protocol in [10]

[10] Pawel Jurczyk et al. Information Sharing across Private Databases: Secure Union Revisited. SocialCom/PASSAT 2011

Optimization: Our MR algorithm

Approx. Guarantee: $Pr(\delta < 1 - \varepsilon) \leq 2\exp(\frac{-2W\varepsilon^{-}}{n})$

Outline

Background

Problem Definition

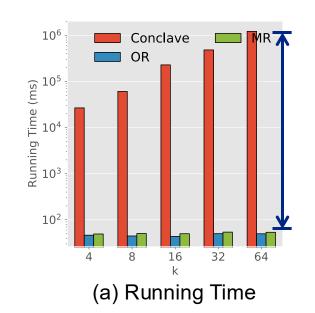
Our Solution

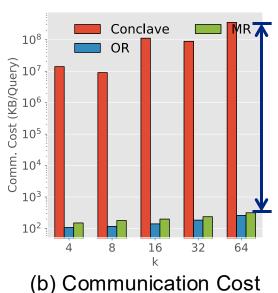
Experiment

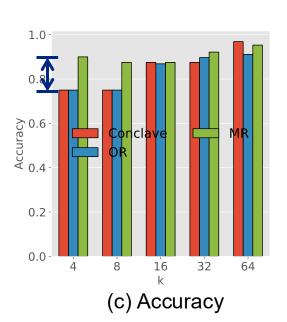
Conclusion

Experimental Setup

Datasets

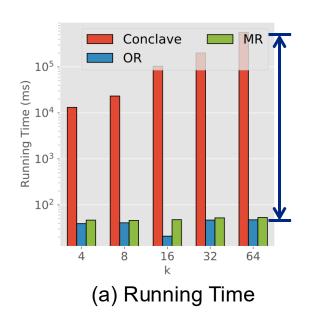

- Real Dataset: Multi-company Spatial Data in Beijing (MBJ)
 - 10 data owners
 - Up to 10⁶ spatial objects
- Synthetic Datasets: OpenStreetMap (OSM)
 - 6 data owners
 - Up to 10⁸ spatial objects

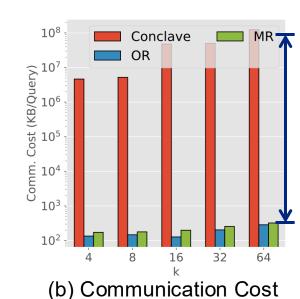

Baselines

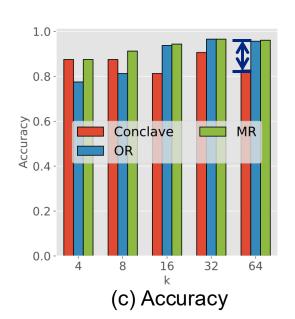

- SMCQL: extended from [3] that only supports 2 data owners
- Conclave: extended from [7] that supports ≥2 data owners
- Both baselines have security and approximation guarantees

Experimental Result

- Varying parameter k on MBJ dataset
 - Running time
 - 2~4 orders of magnitude shorter
 - Communication cost
 - 4~6 orders of magnitude lower
 - Accuracy
 - Can be 13% higher







Experimental Result

- Varying parameter k on OSM dataset
 - Running time
 - Up to 3 orders of magnitude shorter
 - Communication cost
 - Up to 5 orders of magnitude lower
 - Accuracy
 - More robust

Outline

Background

Problem Definition

Our Solution

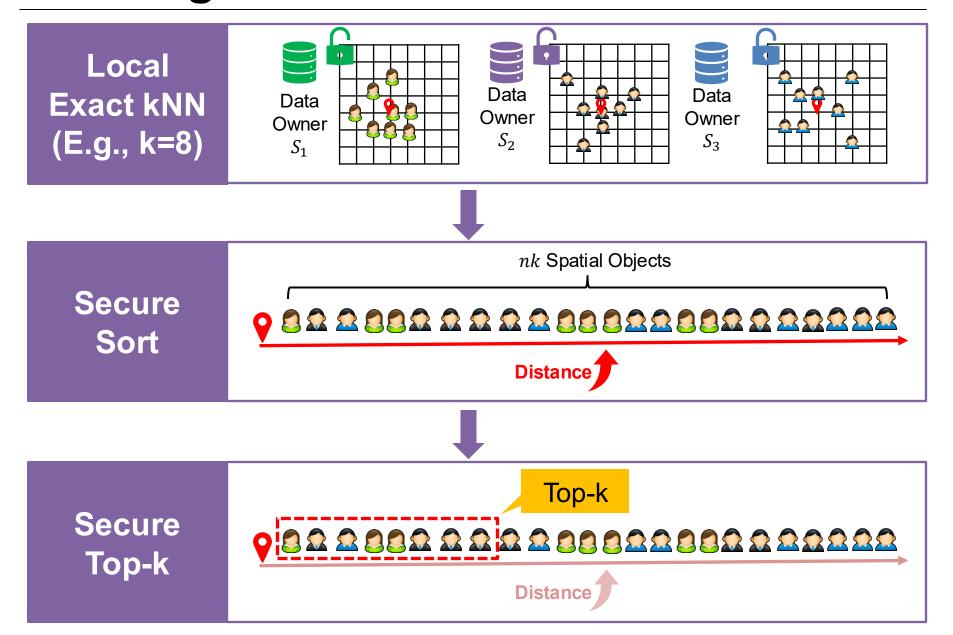
Experiment

Conclusion

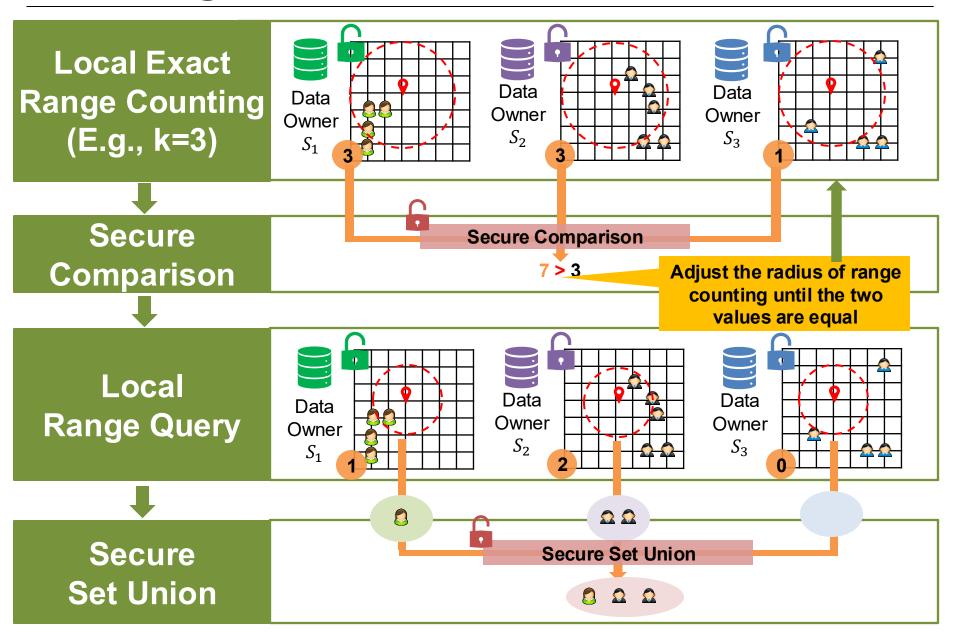
Conclusion

- Data federation is one of the most popular solutions to data fragmentation and isolation
- We studied approximate kNN query over largescale spatial data federation
- We proposed solutions with theoretical analysis on complexity and approximation guarantee
- Extensive experiments demonstrate superiority performance of our solution in terms of efficiency and accuracy

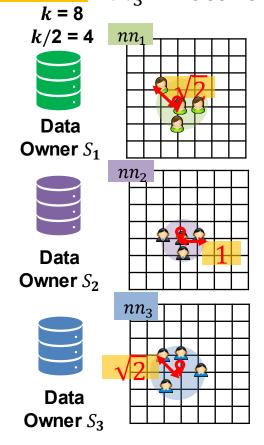
Q & A



Thank You!


References

- [1] The World's Most Valuable Resource Is No Longer Oil, but Data. The Economist. 2017
- [2] Qiang Yang, et al. Federated Machine Learning: Concept and Applications. ACM TIST 2019
- [3] Johes Bater, et al. SMCQL: Secure Query Processing for Private Data Networks. PVLDB 2017.
- [4] Akash Bharadwaj, Graham Cormode. An Introduction to Federated Computation. SIGMOD 2022
- [5] Wen Li, et al. Approximate Nearest Neighbor Search on High Dimensional Data Experiments, Analyses, and Improvement. IEEE TKDE 2020
- [6] Mengzhao Wang, et al. A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest Neighbor Search. PVLDB 2021
- [7] Nikolaj Volgushev, et al. Conclave: Secure Multi-party Computation on Big Data. EuroSys 2019
- [8] Yongxin Tong, et al. Hu-Fu: Efficient and Secure Spatial Queries over Data Federation. PVLDB 2022
- [9] Kallista A. Bonawitz et al. Practical Secure Aggregation for Privacy-Preserving Machine Learning. CCS 2017
- [10] Pawel Jurczyk et al. Information Sharing across Private Databases: Secure Union Revisited. SocialCom/PASSAT 2011

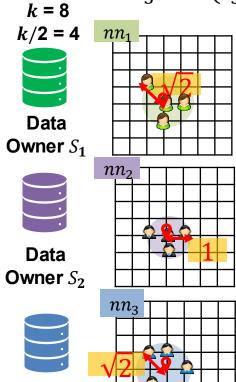

Existing Work: SMCQL/Conclave

Existing Work: Hu-Fu

- Get local (k/2)NN and (k/2)th nearest distance r_i
- $nn_1 \leftarrow \text{local exact (k/2)NN of } S_1, \quad r_1 \leftarrow max_{i \in [1,k/2]} dis(l_{nn_1[i]}, l_q)$ $nn_2 \leftarrow \text{local exact (k/2)NN of } S_2, r_2 \leftarrow max_{i \in [1,k/2]} dis(l_{nn_2[i]}, l_a)$ $nn_3 \leftarrow \text{local exact (k/2)NN of } S_3, r_3 \leftarrow max_{i \in [1,k/2]} dis(l_{nn_3[i]}, l_q)$ Round

1st

	r_i
S_1	$\sqrt{2}$
S_2	1
S_3	$\sqrt{2}$

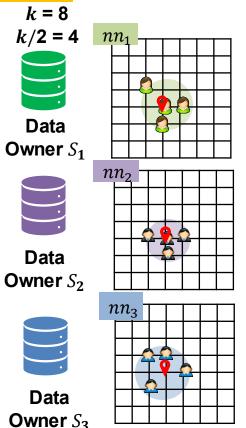

- Compute each data owner's density $(k/2)/area_i$
 - $area_1 \leftarrow \pi(r_1)^2$, $density_1 \leftarrow (k/2)/2\pi$

1st Round

Data Owner S_3

$$area_2 \leftarrow \pi(r_2)^2$$
, $density_2 \leftarrow (k/2)/\pi$

$$area_3 \leftarrow \pi(r_3)^2$$
, $density_3 \leftarrow (k/2)/2\pi$

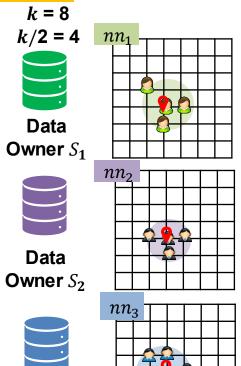


	r_i	area _i	density _i
S_1	$\sqrt{2}$	2π	$(^{k}/_{2})/2\pi$
S_2	1	π	$(^k/_2)/\pi$
S_3	$\sqrt{2}$	2π	$(^{k}/_{2})/2\pi$

- Compute contribution proportional to density
 - Compute sum of density by secure summation protocol in [9]

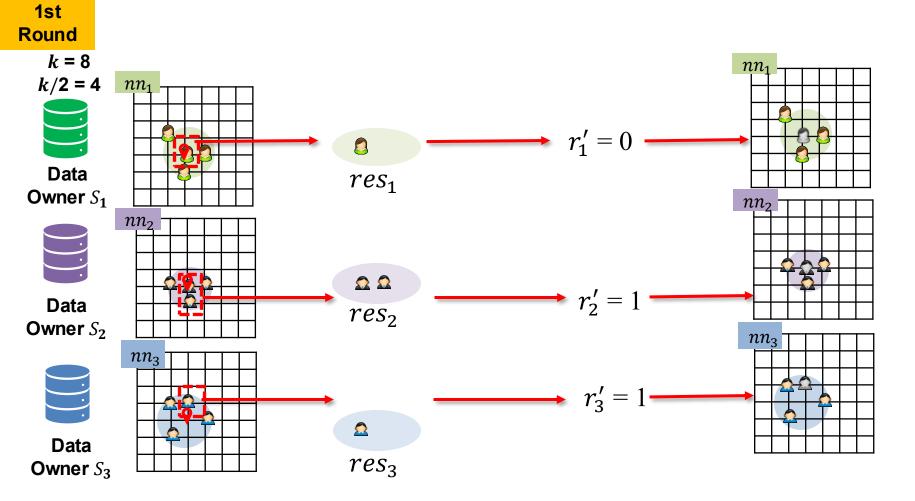
o
$$sum = SecureSum\left(\frac{k/2}{2\pi}, \frac{k/2}{\pi}, \frac{k/2}{2\pi}\right) = \frac{k}{\pi}$$

r_i	area _i	density _i
$\sqrt{2}$	2π	$(^{k}/_{2})/2\pi$
1	π	$(^k/_2)/\pi$
$\sqrt{2}$	2π	$(k/2)/2\pi$
	r_i $\sqrt{2}$ 1 $\sqrt{2}$	$\sqrt{2}$ 2π 1 π


$$sum = SecureSum\left(\frac{k/2}{2\pi}, \frac{k/2}{\pi}, \frac{k/2}{2\pi}\right) = \frac{k}{\pi}$$

- Compute contribution proportional to density
 - Compute sum of density by secure summation protocol in [9]

1st Round


Data Owner S_3

Compute contribution
$$k_i = density_i \times \frac{k/2}{sum}$$
, $sum = \frac{k}{\pi}$

	r_i	area _i	density _i	k_i
S_1	$\sqrt{2}$	2π	$(^{k}/_{2})/2\pi$	k/8
S_2	1	π	$(^k/_2)/\pi$	k/4
S_3	$\sqrt{2}$	2π	$(^{k}/_{2})/2\pi$	k/8

• Each data owner pick k_i NN as the partial answer

- Get local (k/2)NN and (k/2)th nearest distance r_i
- $nn_1 \leftarrow \text{local exact (k/2)NN of } S_1, \quad r_1 \leftarrow max_{j \in [1,k/2]} dis(l_{nn_1[j]}, l_q)$ $nn_2 \leftarrow \text{local exact (k/2)NN of } S_2, r_2 \leftarrow max_{i \in [1,k/2]} dis(l_{nn_2[i]}, l_a)$ $nn_3 \leftarrow \text{local exact (k/2)NN of } S_3, r_3 \leftarrow max_{j \in [1,k/2]} dis(l_{nn_3[j]}, l_q)$ Round

$\kappa = 8$	
k/2 = 4	nn_1
	3/2
Data	
Owner S_1	
Data Owner S ₂	nn ₂
	nn_3
Data	
Owner S_3	V D

2st

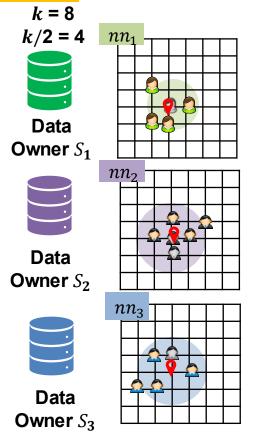
	r_i
S_1	$\sqrt{2}$
S_2	$\sqrt{5}$
S_3	$\sqrt{5}$

• Compute each data owner's density $\binom{k}{2}$ / $area_i$

 $area_1 \leftarrow \pi[(r_1)^2 - (r_1')^2], density_1 \leftarrow (k/2)/2\pi$ $area_2 \leftarrow \pi[(r_2)^2 - (r_2')^2], density_2 \leftarrow (k/2)/4\pi$ Round $area_3 \leftarrow \pi[(r_3)^2 - (r_3')^2], density_3 \leftarrow (k/2)/4\pi$

k = 8	
k/2 = 4	nn_1
	2 12
Data Owner S_1	
	nn_2
$\stackrel{\smile}{\longrightarrow}$	
Data Owner S_2	$\frac{2}{\sqrt{5}}$
Owner 32	nn_3

2st


Data Owner S_3

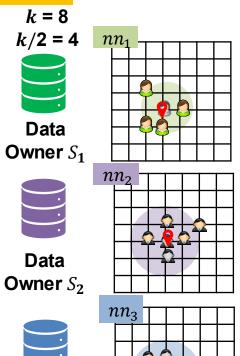
	r_i	area _i	density _i
S_1	$\sqrt{2}$	2π	$(^{k}/_{2})/2\pi$
S_2	$\sqrt{5}$	4π	$(k/2)/4\pi$
S_3	$\sqrt{5}$	4π	$(k/2)/4\pi$

- Compute contribution proportional to density
 - Compute sum of density by secure summation protocol in [9]

2st Round

o
$$sum = SecureSum\left(\frac{k/2}{2\pi}, \frac{k/2}{4\pi}, \frac{k/2}{4\pi}\right) = \frac{k/2}{\pi}$$

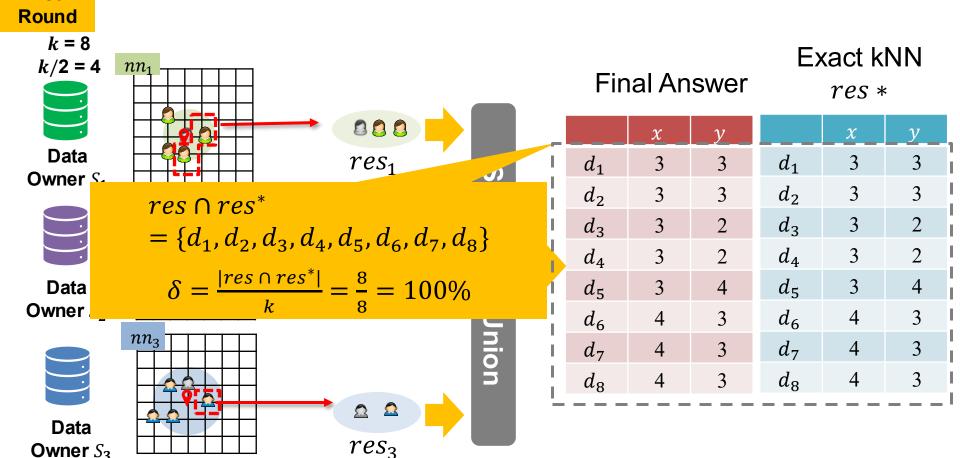
	r_i	area _i	density _i
S_1	$\sqrt{2}$	2π	$(^{k}/_{2})/2\pi$
S_2	$\sqrt{5}$	4π	$(k/2)/4\pi$
S_3	$\sqrt{5}$	4π	$(^{k}/_{2})/4\pi$


$$sum = SecureSum\left(\frac{k/2}{2\pi}, \frac{k/2}{4\pi}, \frac{k/2}{4\pi}\right) = \frac{k/2}{\pi}$$

- Compute contribution proportional to density
 - Compute sum of density by secure summation protocol in [9]

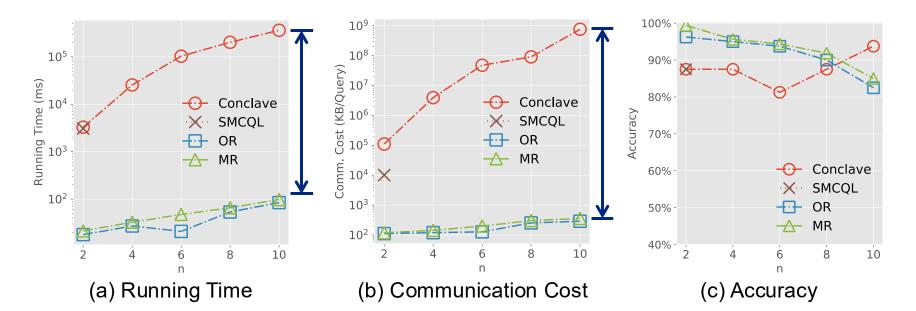
2st Round

Data Owner S_3


Compute contribution
$$k_i = density_i \times \frac{k/2}{sum}$$
, $sum = \frac{k/2}{\pi}$

	r_i	area _i	density _i	k_i
S_1	$\sqrt{2}$	2π	$(^{k}/_{2})/2\pi$	k/4
S_2	$\sqrt{5}$	4π	$(^{k}/_{2})/4\pi$	k/8
S_3	√5	4π	$(^{k}/_{2})/4\pi$	k/8

2st


- Collect final answer by secure set union
 - Each data owner pick k_iNN again as the partial answer
 Collect partial answers by secure set union protocol in [10]

[10] Pawel Jurczyk et al. Information Sharing across Private Databases: Secure Union Revisited. SocialCom/PASSAT 2011

Experiment: Result

- Varying #(data owners) n on OSM dataset
 - Running time
 - Up to 3 orders of magnitude shorter
 - Communication cost
 - Up to 5 orders of magnitude higher
 - Accuracy
 - More robust

